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ABSTRACT

Color correction is an essential image processing operation
that transforms a camera-dependent RGB color space to a
standard color space, e.g., the XYZ or the sRGB color space.
The color correction is typically performed by multiplying the
camera RGB values by a color correction matrix, which often
amplifies image noise. In this paper, we propose an effective
color correction pipeline for a noisy image. The proposed
pipeline consists of two parts; the color correction and denois-
ing. In the color correction part, we utilize spatially varying
color correction (SVCC) that adaptively calculates the color
correction matrices for each local image block considering the
noise effect. Although the SVCC can effectively suppress the
noise amplification, the noise is still included in the color cor-
rected image, where the noise levels spatially vary for each
local block. In the denoising part, we propose an effective
denoising framework for the color corrected image with spa-
tially varying noise levels. Experimental results demonstrate
that the proposed color correction pipeline outperforms exist-
ing algorithms for various noise levels.

Index Terms— Color correction, denoising, noise level

1. INTRODUCTION

In current color digital cameras, the spectral sensitivity of an
image sensor usually differs from that of the human visual
system. Therefore, a transformation of the camera-dependent
RGB color space into a standard color space, typically the
device-independent XYZ or the display sRGB color space, is
required to improve color fidelity. This process is commonly
called color correction. The color correction is one of the
most essential and important operations in the digital color
image processing pipeline.

In the past literatures, many algorithms have been pro-
posed for the color correction including a least-square map-
ping with a linear model [1], a polynomial model [2], and
a root-polynomial model [3], use of look-up tables [4], and
a neural network approach [5]. Although these algorithms
minimize the errors between the ideal and the color corrected
values, they often amplify image noise. In practice, we need
to take account of the noise for the color correction. A nu-
merous number of denoising algorithms have also been pro-
posed (see [6] for a review). To combine the color correc-

tion with the denoising, two straightforward approaches can
be considered; (i) the denoising after the color correction and
(ii) the color correction after the denoising. However, the sim-
ple combinations do not work well when the noise level (i.e.,
the standard deviation of the noise) is high, which will be
shown in experimental results.

Several works addressed the suppression of the noise am-
plification by designing spectral sensitivity functions of the
color filters [7–9] or developing a customized sensor without
an IR-cut filter [10]. However, the spectral sensitivity func-
tions are generally given and hard to manually design because
of the requirement of hardware modifications. The develop-
ment of the customized sensor is also expensive.

Some algorithms have also been proposed to suppress the
noise amplification by the color correction [11–16]. In [11],
the authors proposed a methodology for choosing an appro-
priate color correction matrix that minimizes either a mean
color error or a mean variance caused by the noise. In [12],
the authors used low-pass filters to prevent the noise ampli-
fication. In [13], the authors applied the color correction to
only high-energy components in the DCT domain. In [14,15],
an optimal color correction matrix was estimated by a least-
square analysis considering both the color accuracy and the
noise effect. In [16], the authors proposed spatially vary-
ing color correction (SVCC) that divides the image into local
blocks and estimates the optimal color correction matrices for
each local block considering the noise effect. Although these
algorithms can successively suppress the noise amplification,
the noise is still included in the color corrected image because
these algorithms do not explicitly incorporate denoising func-
tionality.

In this paper, we propose an effective color correction
pipeline for a noisy image. The proposed pipeline consists of
two parts; the SVCC and the denoising. As mentioned above,
the SVCC is an effective color correction algorithm consider-
ing the noise effect. However, it is not straightforward to com-
bine the SVCC with an existing high-performance denois-
ing algorithm because the noise levels after the SVCC spa-
tially vary for each local image block (see details in Sec. 2).
Therefore, we propose an effective denoising framework for
the noisy image with spatially varying noise levels. Experi-
mental results demonstrate that the proposed color correction
pipeline achieves clear improvements compared with existing
algorithms.



2. SPATIALLY VARYING COLOR CORRECTION

In this section, we briefly review the SVCC [16] and a chal-
lenge for combining the SVCC with an existing denoising al-
gorithm. First, let us consider a linear3 × 3 mapping for the
color correction of a noise-free RGB image. The color cor-
rection by the linear mapping is described as

y = Mx, (1)

wherex is the input noise-free RGB vector,y is the color
corrected RGB vector, andM is the linear mapping matrix
for the noise-free case. The linear mapping matrixM is typi-
cally learned by a least-square manner based on training color
samples.

In a practical situation, the input RGB image contains
noise. In a noisy case, the linear mapping often amplifies the
noise. To reduce the noise amplification, an optimal linear
mapping matrix [14, 15] considering both the color accuracy
and the noise effect is estimated as

M̂ = arg min
Mn

E
[
∥Mx−Mnxn∥

2
]
, (2)

wherexn = [rn, gn, bn]
T is the noisy RGB vector,Mn is

the linear mapping matrix for the noisy case,E[·] represents
the expectation operator, and̂M is the estimated optimal lin-
ear mapping matrix that minimizes the expected value of the
difference between the noise-free case and the noisy case.

In the following discussion, let us assume that the noise
of each channel in the input RGB image is zero-means Gaus-
sian noise with a spatially constant noise level. By assuming
that the noise of each channel is independent of the noise-free
RGB signals and independent of each other, the optimal linear
mapping matrix can be estimated as

M̂ = M(C−Cn)T (C−1)T , (3)

whereC andCn are the correlation matrix of the noisy RGB
vector and that of the noise, respectively. The correlation ma-
trices are calculated as

C =

 E[r2n] E[rngn] E[rnbn]

E[rngn] E[g2n] E[bngn]

E[rnbn] E[gnbn] E[b2n]

 , (4)

Cn = diag
([
σ2
r , σ

2
g , σ

2
b

])
, (5)

where
[
σ2
r , σ

2
g , σ

2
b

]
is the noise variance of each channel,

which is assumed to be known. In the SVCC [16], the input
noisy RGB image is firstly divided into local image blocks.
Then, optimal linear mapping matrices are estimated for each
local block as shown in Fig. 1, where the correlation matrix
C is approximately estimated based on the input noisy values
in each local block.

Although the SVCC can suppress the noise amplification,
the noise still remains and needs to be removed. However, it is
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Fig. 1. Schematic illustration of the SVCC. The noise levels
spatially vary after the SVCC.

not straightforward to combine the SVCC with denoising. In
case the denoising is applied first, the denoising corrupts the
assumption of the Gaussian noise, which is used in the SVCC.
The case that the SVCC is applied first also has a challenge.
As described before, the SVCC estimates the optimal linear
mapping matrices for each local block. As a consequence,
the noise levels after the SVCC spatially vary for each local
block as shown in Fig. 1. However, most of existing denoising
algorithms assume that the noise level is spatially constant for
whole image pixels.

3. PROPOSED COLOR CORRECTION PIPELINE

Fig. 2 shows the proposed color correction pipeline for a noisy
image. Given the camera-dependent noisy RGB image, our
goal in this paper is to generate the display sRGB image while
reducing the noise. We first apply the SVCC to correct the
color of the noisy RGB image while suppressing the noise
amplification. Then, we apply a denoising framework to the
color corrected image with spatially varying noise levels after
the SVCC.

In the following, we denote the noisy input image asX =
[x1,x2, · · · ,xI ], wherexi is the input noisy RGB vector at
the pixel i and I is the number of pixels. We also denote
the color corrected image asY = [y1,y2, · · · ,yI ], where
yi is the color corrected RGB vector. Based on the SVCC
described in the previous section, we divide the input noisy
image intok × k blocks by a sliding manner and estimate
the optimal linear mapping matrices for each block. For each
pixel i, the color corrected RGB vectoryi is calculated as

yi = M̂ixi, (6)

whereM̂i is the estimated optimal linear mapping matrix for
the block centered at the pixeli.

Next, we calculate the noise level distribution of each
channel after the SVCC. In the following, we omit the pixel
indexi to simplify the notation. At each pixel, the noise level
of the R channel after the SVCC is calculated as

σ̂r =
√

m̂2
11σ

2
r + m̂2

12σ
2
g + m̂2

13σ
2
b (7)

where
[
σ2
r , σ

2
g , σ

2
b

]
is the noise variance of the input noisy

RGB image, which is assumed to be spatially constant and
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Fig. 2. Overall flow of the proposed color correction pipeline.

known,
[
m̂11, m̂12, m̂13

]
is the first row of the optimal lin-

ear mapping matrixM̂, which corresponds the coefficients
for the R channel, and̂σr is the calculated noise level at the
pixel. Fig. 1 shows an example of the calculated noise level
distribution for the R channel. The noise level distributions of
the G and the B channels are calculated in the same manner.

Then, we apply a denoising framework to the color cor-
rected image with the spatially varying noise levels. We first
apply an existing high-performance denoising algorithm us-
ing preset assumed noise levels

[
σ̃1, σ̃2, · · · , σ̃J

]
, whereσ̃1 <

σ̃2 < · · · < σ̃J andJ is the number of assumed noise levels.
Each denoised image is expressed as

Zσ̃j = Dn(Y, σ̃j), (8)

whereZσ̃j is the denoised image assuming that the noise level
is σ̃j , Y is the input color corrected image by the SVCC, and
Dn(Y, σ̃) represents the denoising operation, which performs
the denoising in a channel by channel manner.

To generate the final output image, we then compose the
denoised images in a similar manner to [17]. The final output
value of the R channel at each pixel is calculated as

gr = (1− αr)zr,σ̃j + αrzr,σ̃j+1 s.t. σ̃j ≤ σ̂r < σ̃j+1, (9)

wheregr is the final output value of the R channel,zr,σ̃j is
the denoised R value assuming the noise levelσ̃j , andαr is
the weight that is adaptively changed based on the calculated
noise level distribution as

αr =
σ̂r − σ̃j

σ̃j+1 − σ̃j
s.t. σ̃j ≤ σ̂r < σ̃j+1, (10)

whereσ̂r is the calculated spatially varying noise level. The
final output values of the G and the B channels are calculated
in the same manner.

4. EXPERIMENTAL RESULTS

In experiments, we used our hyperspectral image dataset [18,
19] of 40 scenes with 512×512 pixels to simulate the whole
color correction pipeline. The hyperspectral image is ac-
quired at every 10nm from 420nm to 720nm. The ground-
truth sRGB image was generated from the hyperspectral

image by using color matching functions and the CIE D65
illumination with the correct white point. The camera RGB
image was generated by assuming the Olympus E-PL2 cam-
era sensitivity [20]. We evaluated the proposed pipeline for
three illuminations; an incandescent light (CIE A), a day-
light (CIE D65), and a fluorescent light (CIE F12). For each
illumination, 20 scenes were used for training the color cor-
rection matrix and the other 20 scenes were used for testing
the proposed pipeline. In the test stage, we added white
Gaussian noise to the noise-free camera RGB image.

We compared the proposed pipeline1 with five existing al-
gorithms; (i) the color correction by the linear3 × 3 map-
ping (CC), (ii) the low noise color correction (LNCC) [12],
(iii) the SVCC [16], (iv) the denoising after the color cor-
rection (D-after-CC), and (v) the color correction after the
denoising (CC-after-D). The LNCC and the SVCC are color
correction algorithms considering the noise effect. In the D-
after-CC, the CC-after-D, and the proposed pipeline, we used
the BM3D algorithm [21] for the denoising of each channel.
In the proposed pipeline, we empirically used the21 × 21
blocks and set|σj+1 − σj | = 2.5 as the interval width of the
assumed noise levels in Eq. (8).

Fig. 3 shows the visual comparison of the result images
for the CIE A illumination with the added noise levelσr =
σg = σb = 20. The proposed pipeline successfully reduce the
noise without severe color artifacts in the wing of the but-
terfly. Fig. 4 shows the visual comparison for the CIE F12
illumination with the added noise levelσr = σg = σb = 30.
The proposed pipeline generates the visually pleasing image,
while the other algorithms fail to remove the noise or generate
severe color artifacts in the character region.

Table 1 and Fig. 5 show the average CPSNR performance
of the test 20 images for different noise levels. Compared with
the CC, the LNCC and the SVCC improves the performance
because these algorithms take account of the noise effect. The
D-after-CC and the CC-after-D reasonably work well for low
noise levels. However, these algorithms yield poor results for
high noise levels. In contrast, the proposed pipeline outper-
forms all algorithms and significantly improves the CPSNR
performance especially when the noise level is high.

1Source code available:http://www.ok.ctrl.titech.ac.jp/res/CC/CC.html
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Fig. 3. Visual comparison of result images (CIE A,σ = 20)

(a) Ground truth (b) Input RGB

(c) CC (d) LNCC [12] (e) SVCC [16]
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Fig. 4. Visual comparison of result images (CIE F12,σ = 30)

Table 1. Average CPSNR performance of 20 test images for different noise levels.

A D65 F12
σ 5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30

CC 25.86 20.02 16.54 14.05 12.12 10.5428.88 23.02 19.53 17.04 15.11 13.5324.48 18.59 15.10 12.60 10.67 9.09
LNCC [12] 30.51 26.70 23.76 21.49 19.67 18.1429.57 24.78 21.54 19.14 17.25 15.7030.31 26.87 24.07 21.87 20.07 18.57
SVCC [16] 33.04 29.52 27.19 25.44 24.03 22.8533.50 29.22 26.61 24.72 23.25 22.0532.69 29.26 26.97 25.24 23.84 22.66
D-after-CC 35.16 31.23 28.05 25.56 23.55 21.9436.82 33.31 30.65 28.48 26.66 25.1234.48 30.03 26.65 24.03 22.07 20.60
CC-after-D 34.86 31.71 29.24 27.22 25.51 24.0136.90 33.84 31.69 29.96 28.50 27.2234.22 30.59 27.84 25.58 23.71 22.09
Proposed 35.68 33.37 31.72 30.35 29.21 28.2037.18 34.12 32.00 30.35 29.00 27.7835.25 32.89 31.20 29.86 28.74 27.74
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Fig. 5. Graphical presentation of average CPSNR performance of 20 test images for different noise levels.

5. CONCLUSION

In this paper, we have proposed an effective color correc-
tion pipeline for a noisy image. The proposed pipeline effec-
tively incorporates the SVCC and the state-of-the-art denois-

ing algorithm. In particular, we have proposed a denoising
framework for spatially varying noise levels derived from the
SVCC. Experimental results demonstrate that the proposed
pipeline achieves clear improvements compared with existing
algorithms especially for high noise levels.
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[11] U. Barnḧofer, J. DiCarlo, B. Olding, and B. Wandell,
“Color estimation error trade-offs,”Proc. of SPIE, vol.
5017, pp. 263–273, 2003.

[12] L. Kharitonenko, S. Twelves, and C. Weerasinghe,
“Suppression of noise amplification during colour cor-
rection,” IEEE Trans. on Consumer Electronics, vol.
48, no. 2, pp. 229–233, 2002.

[13] I. Kharitonenko and W. Li, “Image color correction in
DCT domain,” Proc. of IEEE Int. Conf. on Consumer
Electronics (ICCE), pp. 245–248, 2013.

[14] Y.-P. Tan and T. Acharya, “A method for color correc-
tion with noise consideration,”Proc. of SPIE, vol. 3963,
pp. 329–337, 2000.

[15] S. Quan, “Analytical approach to the optimal linear ma-
trix with comprehensive error metric,”Proc. of SPIE,
vol. 5292, pp. 243–253, 2004.

[16] S. Lim and A. Silverstein, “Spatially varying color cor-
rection (SVCC) matrices for reduced noise,”Proc. of
Color and Imaging Conference (CIC), pp. 76–81, 2004.

[17] Z. Liu, M. Tanaka, and M. Okutomi, “Signal depen-
dent noise removal from a single image,”Proc. of IEEE
Int. Conf. on Image Processing (ICIP), pp. 2679–2683,
2014.

[18] Y. Monno, T. Kitao, M. Tanaka, and M. Okutomi, “Op-
timal spectral sensitivity functions for a single-camera
one-shot multispectral imaging system,”Proc. of IEEE
Int. Conf. on Image Processing (ICIP), pp. 2137–2140,
2012.

[19] Y. Monno, S. Kikuchi, M. Tanaka, and M. Okutomi, “A
practical one-shot multispectral imaging system using a
single image sensor,”IEEE Trans. on Image Processing,
vol. 24, no. 10, pp. 3048–3059, 2015.

[20] J. Jiang, D. Liu, J. Gu, and S. Süsstrunk, “What is the
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