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ABSTRACT

Linear color correction (LCC) and polynomial color correc-
tion (PCC) are widely used in a camera imaging pipeline.
PCC generally achieves lower colorimetric errors than LCC.
However, if an image contains noise, PCC amplifies the noise
more severely than LCC. Consequently, there is a trade-off
between LCC and PCC in the presence of noise. In this paper,
we propose a novel framework for color correction, which we
call tunable color correction (TCC). TCC enables us to tune a
color correction matrix between linear and polynomial mod-
els by a tuning parameter. We also present a way of selecting
a suitable parameter value based on the mean squared error
calculation model for PCC. Experimental results demonstrate
that TCC effectively balances the trade-off and outperforms
both LCC and PCC for noisy images.

Index Terms— Color correction, linear model, polyno-
mial model, noise

1. INTRODUCTION

In color digital cameras, the spectral sensitivity functions of
RGB color filters are device-dependent and usually differ
from those of the human visual system. Thus, color correc-
tion (or camera characterization) is an essential process that
transforms a camera-dependent RGB color space into a stan-
dard or desired color space, typically the device-independent
XYZ or display sRGB color space [1,2].

Many color correction methods were proposed in the past
literatures, including least-squares regression-based meth-
ods [2–5], look-up-table-based methods [6, 7], and neural
network-based methods [8, 9]. Among these methods, linear
color correction (LCC) [2,3] and polynomial color correction
(PCC) [4] are widely used. LCC is performed by multiplying
a camera RGB vector by a3 × 3 LCC matrix. PCC exploits
high-order terms in addition to the first-order linear terms
used in LCC. Both in LCC and PCC, the color correction
matrix is calculated by least-squares regression (often with
some constraint [10–13]) to minimize the colorimetric errors
between target and color-corrected values for training data.

One challenge of LCC and PCC is to reduce the amplifi-
cation of image noise while keeping high color fidelity. PCC
generally achieves lower colorimetric errors than LCC, thanks
to the use of the high-order terms. However, PCC amplifies

noise more severely than LCC, because the high-order terms
in PCC generally have large noise variance. Consequently,
there is a trade-off between LCC and PCC regarding color
fidelity and noise amplification.

Effects of noise on color measurement systems are ana-
lyzed in the literatures of spectral sensitivity designs [14–16]
and color correction [17–21]. These works are based on the
mean squared error (MSE) calculation model for LCC. The
literatures [17–21] provide ways of calculating an optimal
LCC matrix regarding the MSE in the presence of noise.
However, to the best of our knowledge, none of existing
works explicitly derive the MSE calculation model for PCC.

In this paper, we propose a novel framework for color cor-
rection, which we call tunable color correction (TCC). TCC
enables us to tune a color correction matrix between linear
and polynomial models by a tuning parameter, and thus en-
ables us to balance the trade-off between LCC and PCC. We
also present a way of selecting a suitable parameter value
based on the MSE calculation model for PCC, which we ex-
plicitly derive for the first time. Experimental results demon-
strate that TCC outperforms LCC and PCC for noisy images.

2. GENERAL FORMULATION OF LCC AND PCC

LCC and PCC are generally formulated in a matrix form as

q = Mp, (1)

wherep ∈ RN is an input vector formed by camera RGB
values,q ∈ R3 is an output color-corrected vector in a target
color space, andM ∈ R3×N is a color correction matrix. The
dimension ofp depends on how many terms are used for the
color correction. Hereafter, we consider that LCC and PCC
include the bias term. The input vector of LCC is formed as

plcc = [1, pR, pG, pB ]
T , (2)

wherepR, pG, andpB are camera intensity values of R, G,
and B channels, respectively. PCC uses high-order terms. In
what follows, we focus on the second-order PCC with the
bias term to design our proposed TCC. The input vector of
the second-order PCC is formed as

ppcc2 = [1, pR, pG, pB , pRpG, pGpB , pBpR, p
2
R, p

2
G, p

2
B ]

T .

(3)



The color correction matrix is typically calculated using
training color patches by least-squares regression as

M̂ = argmin
M

∥Qt −MPt∥2F , (4)

where∥ · ∥2F is the Frobenius norm,Qt ∈ R3×K is a matrix
containing the color vectors ofK training patches in the tar-
get color space,Pt ∈ RN×K is a matrix containing the corre-
sponding input vectors formed by the camera RGB values of
the patches. The matrix̂M ∈ R3×N is calculated to minimize
the average colorimetric error for the training patches, typi-
cally by using noise-free camera RGB values of the patches
obtained in a color calibration phase. However, that matrix
amplifies noise when applied to noisy images [17–22].

3. PROPOSED TUNABLE COLOR CORRECTION

3.1. Color correction matrix calculation

Our proposed TCC is motivated by the fact that large color
correction coefficients for high-order terms in PCC result in
large noise amplification, as will be shown in subsection 3.3.
This fact leads us to calculate our proposed TCC matrix as

M̂(λ) = argmin
M

(
∥Qt −MPt∥2F +

1

λ
∥W ◦M∥2F

)
, (5)

whereM̂(λ) ∈ R3×N is the TCC matrix, which is the same
size as the PCC matrix. The first term is the data fidelity term,
which is the same as Eq. (4). The second term is our proposed
constrain term, where◦ represents the element-wise product
andW ∈ R3×N is a binary weighting matrix designed to
constrain on the coefficients for the high-order terms. Specif-
ically, in the case of the second-order form of Eq. (3), the
weighting matrix is designed as

W =

0 0 0 0 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1

 . (6)

Our proposed TCC matrix has the following properties.

lim
λ→0

M̂(λ) =
[
M̂lcc 0

]
,

lim
λ→∞

M̂(λ) = M̂pcc,
(7)

whereM̂lcc ∈ R3×4 andM̂pcc ∈ R3×N are the LCC and
PCC matrices calculated by Eq. (4), respectively.0 is the
zero matrix of size3 × (N − 4). Those properties indicate
that TCC is tunable between LCC and PCC by a parameterλ.

Eq. (5) can be solved in the vectorized from as

m̂v(λ) =

(
PT

v Pv +
1

λ
WT

d Wd

)−1

PT
v qv, (8)

wherem̂v(λ) ∈ R3N andqv ∈ R3K are the vectorized form
of M̂(λ) andQt, respectively.Pv ∈ R3K×3N is the matrix
representing the input vectors.Wd ∈ R3N×3N is the diago-
nal matrix whose diagonal elements are the weights inW.

3.2. Selection of the parameter value

In this subsection, we present a way of selecting the parameter
value based on the MSEs for training color patches. In the
presence of noise, the MSE for thek-th patch is estimated as

MSEk(λ) = E(∥qk − M̂(λ)pk∥22), (9)

whereE(·) is the expectation operator,qk is the target vector
for thek-th patch, andpk is a random variable representing
the input vector with noise. Letµk ∈ RN be the expectation
of pk, i.e.,µk = E(pk). Then, Eq. (9) can be rewritten as

MSEk(λ) = ∥qk − M̂(λ)µk∥22 +
3∑

i=1

V (m̂T
i (λ)pk), (10)

wherem̂i(λ) ∈ RN is the vector representing thei-th row of
M̂(λ), i.e., M̂(λ) = [m̂1(λ), m̂2(λ), m̂3(λ)]

T , andV (·) is
the variance operator. The first term represents the expected
colorimetric error. The second term represents the noise vari-
ance of the color-corrected values. The expected vectorµk

and the noise variance to calculate the MSE will be modeled
in the next subsection.

Based on the MSE for each training color patch, the value
of the tuning parameterλ is selected as

λ̂ = argmin
λ

K∑
k=1

MSEk(λ), (11)

whereλ̂ minimizes the sum of the MSEs for all patches.

3.3. MSE calculation model

Equation (10) indicates that the MSE for each training patch
can be calculated from the expected vectorµk and the noise
variance of the color-corrected values. Such calculations are
widely performed in LCC [17–21]. However, to the best of
our knowledge, none of existing works have extended the cal-
culations to PCC. In what follows, we derive the MSE cal-
culation model for the second-order PCC, which is used to
design our proposed TCC in Eq. (5). Hereafter, we denote the
second-order PCC as PCC for notation simplicity.

We first derive the expectation of the input vector,ppcc2

in Eq. (3). If an input image contains noise, the camera RGB
values can be represented as

pR = gR + nR, pG = gG + nG, pB = gB + nB, (12)

wheregR, gG, andgB are latent noise-free camera RGB val-
ues, andnR, nG, andnB represent noise of each channel,
respectively.

In the following discussion, we assume that noise of each
channel is zero-mean signal-independent Gaussian noise and
the noise variance of each channel isσ2

R, σ2
G, or σ2

B. We
further assume that the noise of each channel is independent



of the latent noise-free RGB values and independent of each
other. These assumptions are often made in the past literatures
[14, 20]. Based on those assumptions, the expectation of the
input vector,µpcc2 = E(ppcc2), is derived as

µpcc2 = [1, gR, gG, gB , gRgG, gGgB , gBgR,

g2R + σ2
R, g

2
G + σ2

G, g
2
B + σ2

B ]
T .

(13)

We next derive the noise variance of color-corrected val-
ues by PCC. To simplify the notation, we rewrite Eq. (3) as

ppcc2 = [1, pR, pG, pB , pRpG, pGpB , pBpR, p
2
R, p

2
G, p

2
B ]

T

= [1, pR, pG, pB , pRG, pGB , pBR, pR2 , pG2 , pB2 ]T .

Then, we express the color-corrected vector by PCC as

q = [q1, q2, q3]
T = Mpcc2ppcc2 ,

= [mT
1 ppcc2 ,m

T
2 ppcc2 ,m

T
3 ppcc2 ]

T ,
(14)

wheremi is the vector representing thei-th row of the PCC
matrix, i.e.,Mpcc2 = [m1,m2,m3]

T .
Hereafter, without loss of generality, we omit the row in-

dexi for notation simplicity and express the vectormi as

m = [m1,mR,mG,mB ,mRG,mGB ,mBR,mR2 ,mG2 ,mB2 ]T .

Then, a color-corrected value by PCC is expressed as

q = mTppcc2

= m1 +mRpR +mGpG +mBpB

+mRGpRG +mGBpGB +mBRpBR

+mR2pR2 +mG2pG2 +mB2pB2 .

(15)

In the following formulation, we letX ∈ {R,G,B}
be the index set of the first-order linear terms,XY ∈
{RG,GB,BR} be that of the second-order cross terms, and
X2 ∈ {R2, G2, B2} be that of the squared terms. Similarly,
we use(X,Y ), (XY, Y Z), (X2, Y 2), (X,XY ), (X,X2),
and(XY,X2) to represent sets of all possible combinations
of the linear, cross, and squared terms. Then, the noise vari-
ance of the color-corrected value by PCC is derived as

V (q) =
∑
X

m2
XV (pX) +

∑
XY

m2
XY V (pXY ) +

∑
X2

m2
X2V (pX2 )

+ 2

( ∑
(X,Y )

mXmY C(pX , pY ) +
∑

(XY,Y Z)

mXY mY ZC(pXY , pY Z)

+
∑

(X2,Y 2)

mX2mY 2C(pX2 , pY 2 ) +
∑

(X,XY )

mXmXY C(pX , pXY )

+
∑

(X,X2)

mXmX2C(pX , pX2 ) +
∑

(XY,X2)

mXY mX2C(pXY , pX2 )

)
.

(16)

whereC(·, ·) is the covariance operator. By using the as-
sumptions we made, the variance and the covariance in

Eq. (16) are derived asV (pX) = σ2
X , V (pXY ) = g2Xσ2

Y +
g2Y σ

2
X + σ2

Xσ2
Y , V (pX2) = 2σ4

X + 4g2Xσ2
X , C(pX , pY ) = 0,

C(pXY , pY Z) = gXgZσ
2
Y , C(pX2 , pY 2) = 0, C(pX , pXY )

= gY σ
2
X , C(pX , pX2) = 2gXσ2

X , and C(pXY , pX2) =
2gXgY σ

2
X , respectively.

In the above calculations, we derived the variance and the
covariance of the second-order-related terms, which are gen-
erally large values. These calculation results motivate us to
design the weighting matrix for TCC as Eq. (6) to constrain
on the coefficients for the second-order terms.

Finally, the MSE for each training patch can be calculated
by Eq. (10) using the derived models in Eq. (13) and (16).

3.4. Procedure of our proposed TCC

The procedure of our proposed TCC is summarized as fol-
lows. In the matrix calculation phase, training color patches
are captured as bright as possible to get the noise-free cam-
era RGB values (i.e.,gR, gG, andgB) of the patches. Then,
TCC matrices are calculated by Eq. (5) using a set of pa-
rameter values (λ = λ1, λ2, · · · ). In the application phase,
the MSE for each training patch is calculated using Eq. (10),
(13), and (16) for given noise levels (i.e.,σR, σG, andσB),
which are assumed to be known or estimated from the cap-
tured image [23]. Then, the best parameter valueλ̂ is selected
by Eq. (11). Finally, the TCC matrix with the selected param-
eter value is applied to the captured noisy image.

4. EXPERIMENTAL RESULTS

We conducted simulation experiments to evaluate the perfor-
mance of LCC, PCC, and our proposed TCC. For the cal-
culation of the color correction matrices, we used the spectral
reflectance data of 96 patches in the X-lite ColorChecker Dig-
ital SG as training data. We set the target color space to the
sRGB color space and used the CIE A illumination as a light
source for generating camera RGB values.

From the spectral reflectance data of the 96 patches, the
target color vectors in the sRGB color space (to construct
Qt) were generated using XYZ color matching functions and
the XYZ-to-sRGB transformation matrix. Noise-free cam-
era RGB values under the CIE A illumination (to construct
Pt) were generated using the Olympus E-PL2 camera sen-
sitivity [24]. The LCC and PCC matrices were calculated
by Eq. (4). Our proposed TCC matrices were calculated by
Eq. (5) using a set of tuning parameter values. In the follow-
ing experiments, we assumed that the noise variance is the
same for all channels, i.e,σ2

R = σ2
G = σ2

B = σ2.
We first show the effects of different parameter values on

TCC. Figure 1 shows the results of the MSE calculation by
Eq. (10) for the TCC matrices with different parameter val-
ues. Each result in Fig. 1 shows the average of all 96 train-
ing patches withσ = 4. Figure 1 (a) shows the calculated
colorimetric error, which corresponds to the root of the first
term of Eq. (10). Figure 1 (b) shows the calculated standard
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Fig. 1. Results of the MSE calculation by Eq. (10) for our proposed TCC matrices with different parameter values. Each result
shows the average of all 96 training patches withσ = 4. (a) Colorimetric error, (b) standard deviation of noise, and (c) RMSE.
Note that LCC and PCC are equivalent to the cases oflimλ → 0 andlimλ → ∞, respectively.

sRGB LCC PCC TCC

Fig. 2. Comparison of the RMSE maps (σ = 2). The contrast
is enhanced for visualization. The result of PCC in the top
row shows the large noise variance, while the result of LCC
in the bottom row shows the large colorimetric errors. Our
TCC provides the balanced results between LCC and PCC.

deviation of noise, which corresponds to the root of the sec-
ond term of Eq. (10). Figure 1 (c) shows the calculated root
MSE (RMSE), which corresponds to the root of Eq. (10).

In Fig. 1, LCC and PCC are equivalent to the cases of
limλ → 0 and limλ → ∞, respectively. Fig. 1 (a) shows
that the colorimetric error of PCC (limλ → ∞) is lower than
that of LCC (limλ → 0). This is because of the advantage
of using the high-order terms in PCC. In contrast, Fig. 1 (b)
shows that the standard deviation of the color-corrected val-
ues by PCC is larger than that by LCC. This is because the
high-order terms in PCC cause large noise amplification.

Fig. 1 (a) and (b) show that our proposed TCC transition-
ally moves between LCC and PCC by changing the parame-
ter value. Fig. 1 (c) further indicates that there is a point that
balances the trade-off between LCC and PCC, and yields the
result with the minimum RMSE. In TCC, the parameter value
corresponding to that point can be selected based on the MSE
calculation model for the training patches, which we derived
in Eq. (10), (13), and (16).

We next evaluate the performance of TCC. For this pur-
pose, we used two test datasets: synthesized 96 ColorChecker
SG patches (200×200 samples for each patch) and 30 hyper-
spectral images in [25]. The first dataset were used to simulate
an ideal case that the training and test data are the same. The

Table 1. Average RMSE comparison.

ColorChecker SG Hyperspectral
σ LCC PCC TCC LCC PCC TCC
0 6.37 4.81 4.81 11.30 10.65 10.65
2 9.91 9.24 9.17 13.61 13.24 13.29
4 16.45 16.49 16.13 18.91 19.00 18.83
6 23.62 24.17 23.41 25.40 25.92 25.32
8 31.00 31.99 30.81 32.37 33.30 32.25
10 38.43 39.88 38.23 39.57 40.94 39.44

second dataset were used to simulate a more realistic case that
the training and test data are different.

The average RMSEs for both datasets are shown in Ta-
ble 1. For the noise-free and low-noise cases (σ = 0, 2), TCC
provides the results similar to those of PCC, which are better
than LCC. With the increase of the noise level, the average
RMSEs of PCC becomes larger than those of LCC due to the
noise amplification. In contrast, TCC generally provides bet-
ter results than both LCC and PCC for various noise levels.

Figure 2 shows the visual comparison of the RMSE maps
for the hyperspectral dataset. The result of PCC in the top row
shows the large noise variance, while the result of LCC in the
bottom row shows the large colorimetric errors. In contrast,
TCC provides the balanced results between LCC and PCC.
Both the numerical and visual comparisons validate that our
proposed TCC can effectively balance the trade-off regarding
color fidelity and noise amplification.

5. CONCLUSION

In this paper, we proposed TCC, which enables us to tune a
color correction matrix between linear and polynomial mod-
els by a tuning parameter, and thus enables us to balance the
trade-off between LCC and PCC. We also presented a way
of selecting a suitable parameter value based on the MSE
model for PCC. Experimental results demonstrated that our
proposed TCC outperforms LCC and PCC for noisy images.
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