

Background & Motivation

- towards the domain of clean images.

- To address the issue of imperfect adapted clean images from diffusion models for the classification of degraded images, we propose a novel Diffusion-based Adaptation for Unknown Degraded images (DiffAUD) method based on robust classifiers trained on a few known degradations.
 - Robust Classifiers: Train classifiers using knowledge distillation on a few known degradations.
- Known Degradations: JPEG, Gaussian blur, and Gaussian noise.

Diffusion-Based Adaptation for Classification of Unknown Degraded Images Dinesh Daultani¹, Masayuki Tanaka¹, Masatoshi Okutomi¹, Kazuki Endo² ¹Tokyo Institute of Technology, ²Teikyo Heisei University

- DiffAUD improves the performance from the baseline diffusion model, i.e., DDA [1], on the Imagenet-C dataset by about 5% on ResNet-50, Swin-Tiny, and ConvNeXt-Tiny backbones.
- \succ Moreover, we demonstrate that training classifiers using known degradations provides significant performance gains.
- Performance of the baseline method (DDA [1]) substantially drops for lower severity levels. However, DiffAUD performance is invariant to a reduction in degradation severity levels.

Experimental Results

Evaluation with different corruptions averaged over all severities:

Method	bright	contrast	b defocit	elastic	£060	frost	gauss	6)26 ⁵ 6	impilise	.Ibed	motion	pitel	Shot	SHOW	10011	Mean
C_{clean}	65.94	35.73	35.30	43.72	41.94	37.24	33.92	26.34	29.37	56.71	35.67	51.76	32.12	31.36	35.55	39.51
C_{deg}	66.96	38.04	50.22	45.90	45.16	38.02	56.99	28.34	50.85	64.44	38.88	58.91	55.75	31.06	37.89	47.16
DC_{deg}	67.25	37.98	50.13	46.29	45.51	38.89	56.57	28.93	49.00	63.81	40.26	58.35	54.96	32.02	39.14	47.27
DDA [1]	63.19	32.54	34.46	50.26	37.57	42.61	57.80	37.12	56.47	59.66	36.47	59.24	57.64	36.17	37.16	46.56
Ours	66.54	35.11	50.79	54.61	41.53	45.01	62.16	46.42	60.90	65.65	43.97	66.40	62.02	36.24	44.20	52.10
									20							

<u> </u>		X	× A						0	•.						
Methou	vielt	contras	delocut	elastic	40 ⁶ 0	Frost	gauss	0)2055	. MBDIIS	. peg	TROTION	Pixel	Shot	SHOW	20011	TREAT
C_{clean}	73.43	61.26	44.70	51.90	61.27	57.47	55.56	32.30	52.38	62.52	49.73	56.12	53.07	50.44	42.30	53.63
C_{deg}	74.46	57.02	58.11	54.17	61.47	51.08	61.01	33.25	59.77	70.67	50.40	65.89	59.16	47.74	43.90	56.54
DC_{deg}	74.53	57.98	57.56	54.42	61.81	51.68	61.48	33.80	59.99	70.16	51.39	64.85	59.74	48.83	44.15	56.82
DDA [1]	70.75	57.18	43.50	56.87	55.44	57.04	63.54	43.25	62.02	63.41	48.18	62.77	62.85	49.86	43.27	56.00
Ours	73.72	56.36	58.27	61.68	58.71	56.76	67.10	52.64	66.84	70.85	54.29	7 1.08	67.05	49.83	49.70	60.99
	(b) Swin_Tiny													·		

Method	bright	coltrast	detocité	elastic	£0¢	frost	gauss	61855	impilse	.Ipeg	motion	Pixel	Shot	STOW	10010	nean
$\overline{C_{clean}}$	75.24	66.19	48.62	54.20	62.42	59.23	60.32	35.10	58.14	66.96	55.32	61.13	57.97	54.84	46.63	57.49
C_{deg}	76.83	66.23	58.59	55.05	66.87	57.40	67.36	34.89	65.54	73.03	54.92	67.07	66.44	53.57	46.86	60.71
DC_{deg}	77.32	67.13	58.78	55.72	67.59	58.57	67.61	35.66	66.35	72.80	55.89	67.56	66.85	54.77	46.98	61.31
DDA [1]	72.85	61.01	47.09	59.12	53.24	59.84	67.04	47.70	66.20	67.56	53.75	66.79	66.51	53.94	47.83	59.36
Ours	75.99	63.82	60.67	62.72	64.44	60.82	70.22	54.89	69.8 4	73.02	58.12	73.32	69.8 4	54.47	52.78	64.33

> Evaluation with different severities averaged over all corruptions:

Our proposed method based on known degradations and distillation drastically improves the performance for classification of unknown single and sequential degraded images.

References:

[1] Gao et al., Back to the source: Diffusion-driven adaptation to test-time corruption, CVPR 2023.

(a) ResNet-50

(c) ConvNeXt-Tiny

Conclusion