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CNN-Based Classification of Degraded Images with
Awareness of Degradation Levels

Kazuki Endo, Masayuki Tanaka, Member, IEEE, and Masatoshi Okutomi, Member, IEEE

Abstract—Image classification needs to consider the existence
of image degradations in practice. Although degraded images
have various levels of degradation, the degradation levels are
usually unknown. This paper proposes a convolutional neural
network to classify degraded images by using a restoration
network and an ensemble learning. The proposed network
can automatically infer ensemble weights by using estimated
degradation levels of degraded images and features of restored
images, where the degradation levels are estimated internally.
The proposed network is mainly discussed with JPEG distortion,
while degradations of both Gaussian noise and blurring are
also examined. We demonstrate that the proposed network can
classify degraded images over various levels of degradation. This
paper also reveals how the image-quality of training data for
a classification network affects the classification performance of
degraded images.

Index Terms—Degraded Image, Classification, Convolutional
Neural Network, Ensemble, Restoration

I. INTRODUCTION

IMAGE classification has been investigated in many reports
due to the progress of the deep convolutional neural net-

work (CNN) [1], [2], [3], [4], [5], [6]. These reports focus
on the classification of clean images without any degradation.
However, digital images in practical applications are usually
degraded by noise, blur, compression, and other degrada-
tions. The performance of image classification is significantly
dropped in the existence of degradations. Therefore, it is very
important to construct a robust CNN against image degrada-
tions. Such a robust CNN is useful for autonomous driving,
surveillance camera, etc. CNN-based classification of degraded
images also needs to deal with low-quality images and high-
quality images in practice. For example, JPEG compression,
which is the de-facto standard of image compression, can
have several levels of image quality against a clean image.
There are various kinds of degradations and degradation levels.
Therefore, it is required to classify degraded images with
various levels of degradation when degraded images are input
into a classification network.

Classification of degraded images has been proposed in
several papers [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17]. A trivial approach is to input degraded images into
a classification network trained with clean images. But this
approach fails to classify degraded images due to the lack of
knowledge of image degradations. A straightforward approach
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Fig. 1. Classification networks of degraded images

to overcome this deficit is to train a classification network
with degraded images, where the network architecture is
identical to that for clean images [9]. These two approaches are
shown in Fig. 1-(a). Figure 1-(b) shows a sequential network
that consists of an image restoration network and an image
classification network [8], [13]. In the sequential network,
degraded images are firstly restored, and then restored images
are input into the image classification network. The sequential
network has two options, which are to train the classification
network with clean images or with restored images.

The classification network in Fig. 1-(a) trained with de-
graded images and the sequential network in Fig. 1-(b) can
improve the classification performance of degraded images.
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However, it is difficult for them to improve the classification
performance of degraded images while keeping the classifi-
cation accuracy of high-quality images. Figure 1-(c) is one
of the solutions for this difficulty. It is an ensemble network
of two classifiers trained with different image quality datasets;
clean images and degraded images, which is described in [12].
In our previous study [18], we have proposed a CNN-based
classification network of degraded images is an ensemble
network of two sequential networks, as seen in Fig. 1-(d).
The ensemble weights of the ensemble network depend on
the degradation levels inferred by the estimation network of
degradation levels. The ensemble network in Fig. 1-(d) shows
better performance than that in Fig. 1-(c).

This paper proposes an ensemble network whose ensemble
weights depend on not only degradation levels but also the
features of a classification network trained with restored im-
ages, as shown in Fig. 1-(e). The proposed ensemble network
includes an ensemble network in our previous study as a par-
ticular case. This paper focuses on JPEG distortion as an image
degradation and analyzes the details of our proposed method.
However, the proposed method can be applied to other image
degradations, as demonstrated in section V. For the restoration
of degraded images and the estimation of degradation levels,
we adopt an existing CNN-based network [19], [20], [21],
[22], [23], [24], [25], [26].

Our main contributions are three points as follows. The
first point is to reveal how the classification performance of
degraded images is affected by training data for a classifi-
cation network, i.e. clean images or degraded images, and a
restoration before a classification network. The second point is
that we propose an ensemble network of sequential networks,
which can estimate suitable ensemble weights depending on
both an estimated degradation level and a feature extracted
from the classification network trained with restored images.
Our proposed network outperforms the sequential networks
for most of all degradation levels. The last point is that we
confirm the effectiveness of our proposed method for several
degradations; JPEG distortion, additive Gaussian noise, and
Gaussian blur.

This paper is an extended version of our conference pa-
per [18] as follows. 1) An estimation network of ensemble
weights is extended to consider the features of a classification
network trained with restored images. 2) We add the fine-
tuning of both the classification network trained with restored
images and the estimation network of ensemble weights. 3) We
also add the experimental validation for the classification of
Gaussian blurring images. 4) The STL-10 [27] dataset is used
in addition to the CIFAR [28] dataset for the classification of
JPEG images.

II. RELATED WORKS

A. Restoration of degraded images

CNN-based image restoration has been investigated and
shown high-performance [19], [20], [21], [22], [24], [25].
Zhang et al. have proposed a residual CNN which has di-
lated convolutional layers with batch normalization for the
image restoration such as super-resolution, removing noise and

blur [19]. Recently, the performance of a classification network
is used to evaluate single image super-resolution (SISR) [23]
where the classification network is fixed. Our proposed method
also uses both a restoration and a classification network. How-
ever, the classification network is trainable, and the restoration
network is fixed. Although this paper uses a restoration which
is the same network as proposed in [19], the other restoration
algorithms are applicable to the proposed method.

B. Estimation of degradation levels

Estimation of degradation levels has been reported in [26],
[29], [30]. Uchida et al. have proposed a CNN-based pixel-
wise estimation of JPEG quality factors [26]. Liu et al.
have proposed a noise level estimation method by selecting
weak textured patches from a single noisy image [29], [30].
This paper uses almost the same network for the estimation
of degradation levels, as proposed in [26]. However, other
estimation algorithms are also applicable to the proposed
method.

C. Classification of degraded images

Classification of degraded images, such as low-resolution,
noise, blurring, compression, etc., has been investigated [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17]. Pei
et al. have shown the impact of image degradation on the
classification performance under several kinds of degrada-
tion [13]. Especially for haze and motion-blur, they have
empirically shown that there are not much differences between
the classification network only trained with degraded images
and the sequential network incorporated a restoration [10],
[13]. Endo et al. have proposed a classification network whose
inputs are a degraded image and a degradation level [11].
They have shown that the degradation level can help the clas-
sification of degraded images and improve the classification
performance. Gosh et al. have proposed an ensemble network
of classification networks only trained with JPEG images [12].
They have also proposed a method based on maximum a
posteriori (MAP) by using estimated JPEG quality factors
and a simple method based on maximum probability. Chen
et al. have proposed a network to cope with both a restoration
and a recognition of degraded images simultaneously [17].
The network is not a sequential network but has common
layers between the restoration and the recognition. Recently,
consistency regularization approaches have been reported to
classify degraded images [7], [16]. Wan et al. have focused
on JPEG image classification and proposed a training method
to keep the consistency of features extracted from clean images
and JPEG images [7]. All weights of the JPEG image classifier
are the same as the clean image classifier except for a residual
mapping block, which is a restoration network. They focused
on JPEG quality factors under 50. Pei et al. have proposed
a consistency guided network to classify degraded images,
which uses a classification network trained with clean images
as a fixed consistency regularizer [16]. They did not investigate
JPEG distortion but other degradations; haze, motion-blur,
salt-and-pepper, low resolution, Gaussian blur, and Gaussian
noise. Wan [7] and Pei [16] have not paid much attention to
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high-quality images but focused on middle-quality and low-
quality images. However, it is hard to keep the classification
accuracy of both high-quality and low-quality images [31].
In this paper, we cover a wide range of degradation levels.
Our proposed method can classify high-quality and low-quality
images well by the suitable ensemble of two classification
networks; a classification network trained with clean images
and a classification network trained with restored images.
This paper mainly focuses on JPEG distortion but investigates
Gaussian noise and Gaussian blur.

D. Ensembles of classification networks

Ensembles of classification networks are sometimes used
to improve the performance. Xu et al. have proposed a CNN
which has a shared network-in-network and branched fully
convolutional sub-networks with multiple loss functions [32].
Though the CNN is trained with multiple loss functions, the
final prediction in testing is an ensemble mean of predictions
by each sub-network. The ensemble weights for sub-networks
are not learned but constant. Ong et al. have proposed en-
sembles of several deep neural networks for semantic video
classification [33]. In their approach, ensemble weights are
learned in freezing all the weights of classification networks.
Although our proposed method also learns ensemble weights
for sequential networks, our proposed method considers both
an estimated degradation level and a feature of a restored
image to estimate ensemble weights. Thanks to this depen-
dency of ensemble weights, the proposed method can classify
degraded images well for several degradation levels.

III. PROPOSED METHOD

A. Proposed network

Our proposed network is shown in Fig. 1-(e). The proposed
network consists of five sub-networks; a restoration network,
two classification networks, an estimation network of degra-
dation levels, and an estimation network of ensemble weights.
Firstly, degraded images are restored by the restoration net-
work. The restored images are fed into two classification
networks; the classification network trained with clean images
and the classification network trained with restored images.
The classification networks infer each own probability vector.
The features of the classification network trained with restored
images are fed into the estimation network of ensemble
weights. On the other hand, degraded images are also fed into
the estimation network of degradation levels. Estimated degra-
dation levels are fed into the estimation network of ensemble
weights. The estimation network of ensemble weights infers
ensemble weights for two probability vectors predicted by two
classification networks. The weights take values in [0, 1], and
the summation of the weights is one. Finally, the predicted
probability is calculated by weighted averaging.

Figure 2 shows the details of each network. The restoration
network is almost the same as proposed in [19], where a batch
normalization [34] is omitted for simplicity. The estimation
network of degradation levels is almost the same as the
network proposed in [11], [26]. The classification network is
a VGG-like network [1], where we use a spatial dropout [3]

and a convolution pooling [2] instead of a max pooling. The
estimation network of ensemble weights has two inputs; the
feature of the fully connected (FC) layer, which has 1024
elements, extracted from the classification network trained
with restored images and an estimated degradation level. The
feature is fed into FC layers and rectified linear units (ReLU),
where we use a dropout. The output from FC1, which is
denoted by f , is concatenated with the estimated degradation
level represented by q. Finally, ensemble weights are estimated
by a sigmoid function whose input is the linear combination
of f and q.

The sigmoid function w (f, q) in the estimation network of
ensemble weights is defined by the following equation.

w (f, q)
def
=

1

1 + exp (− (af + bq + c))
, (1)

where a, b, c ∈ R1, c denotes a bias. If a is identical to zero,
w (f, q) is simplified as

w (q)
def
=

1

1 + exp (− (bq + c))
. (2)

Eq. (2) is the same sigmoid function as seen in our previous
study [18]. We call the sigmoid functions Eqs. (1) and (2) as
weight functions. For simplicity, wf,q and wq denote w (f, q)
and w (q), respectively.

B. Training procedure

Here, we describe the training procedure of the proposed
network. Firstly, the restoration network is trained with pairs
of degraded images and clean images, where its loss function
is the mean square error (MSE) between clean images and
restored images. Degraded images are generated from clean
images by applying some degradation operations. Clean im-
ages are easily obtained from websites due to no need for any
annotations.

The estimation network of degradation levels is trained with
pairs of degraded images and true degradation levels. Its loss
function is the MSE between true and predicted degradation
levels. Degraded images can be generated in the same way
as in training the restoration network, where true degradation
levels are known.

Two classification networks are trained with different data.
One is trained by using annotated clean images without any
degradation. Another one is trained by using restored images
with annotation. Degraded images with annotation are gen-
erated by applying some degradation operations to annotated
clean images. Restored images with annotation are acquired
from the degraded images by using the restoration network,
where all the weights of the restoration network are fixed
during the training of the classification network. Each loss
function of the two networks is the cross-entropy between the
correct labels and the predicted labels.

Finally, the estimation network of ensemble weights is
trained by using degraded images with annotation, where its
loss function is the cross-entropy between the correct labels
and the predicted labels. When the estimation network of en-
semble weights is trained, all the weights of the following three
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Fig. 2. Details of each network in the proposed network, where 3x3 or 2x2 represents the filter size, fm is the dimension of feature map, d is the dilation
rate, and s is the stride. “G.A.P.” denotes global average pooling. The classification network has two choices for training dataset; clean images and restored
images. The feature of FC1024 is extracted from the classification network trained with restored images.

networks are fixed; the restoration network, the estimation
network of degradation level, and the classification network
trained with clean images. On the other hand, it is possible to
be trained further for the classification network trained with
restored images. Specifically, there are two steps as follows.
The first step is to fix the classification network trained with
restored images when the estimation network of ensemble
weights is trained. The next step is to fine-tune both the
estimation network of ensemble weights and the classification
network trained with restored images.

Note that the proposed network with the weight function
Eq. (2) is equivalent to an ensemble network proposed in
our previous study [18] if the classification network, which
is trained with restored images, is also fixed. Thus, the
proposed method includes the previous study as a special case.
Adamax [35] is used as an optimizer for all the training.

C. Discussion
The essential idea of the proposed network is an ensemble

learing of two classification networks trained with different
data; clean images and restored images. The classification
network trained with clean images can classify high-quality
images but can not classify low-quality images well. On the
other hand, the classification network trained with restored
images shows good performance for low-quality images.
Therefore, if the proposed ensemble network can decide the
ensemble weights by depending on the degradation level of
degraded images, degraded images can be classified over
various levels of degradation. The key point is a dependency
of the weight function on estimated levels of degradation.
The weight functions of the proposed network depend on not
only the estimated levels of degradation but also the features
extracted from each restored image. The proposed network
is expected to improve further by taking into account the
individual features of each restored image.

Five sub-networks of the proposed network are trained in
order. Another way of the training procedure is to train the

proposed network in an end-to-end manner. For ease, we focus
on the training of a sequential network, which is composed
of a restoration network and a classification network, in the
proposed network. A sequential network trained in an end-
to-end manner did not show good performance, as described
in IV-C. It indicates that the sequential network becomes just
a deeper classification network in the end-to-end training and
can not give a specific function to the restoration network.
Therefore, five sub-networks are trained in order. Finally,
further improvement is expected by fine-tuning of both the
classification network trained with restored images and the
estimation network of ensemble weights.

The proposed method can adopt different configurations or
state-of-the-art networks for five sub-networks. The classifi-
cation performance is expected to improve by using better
sub-networks.

IV. EXPERIMENTS

Experiments are mainly focused on JPEG distortion as an
image degradation. The JPEG quality factor is used as a degra-
dation level of JPEG distortion in this paper. Firstly, general
settings, i.e. datasets, data augmentation, and a performance
metric for classification, are described in IV-A and IV-B.
Moreover, preliminary experiments are explained in IV-C.
Then, the classification performance of degraded images is
analyzed for classification networks in terms of incorporating
a restoration network and training data, as described in IV-D.
Our proposed method is evaluated in terms of weight functions
and retraining the classification network trained with restored
images or not, as explained in IV-E and IV-F. Finally, we
confirmed the effectiveness of the proposed method under
different datasets in IV-G and IV-H. The reproduction code
is available on the Internet1.

1http://www.ok.sc.e.titech.ac.jp/res/CNNIR/IRDI/
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TABLE I
CLASSIFICATION ACCURACY FOR ORIGINAL CIFAR-10.

Ours Xu [32] without DA Xu [32] with DA
0.914 0.905 0.919
* DA denotes data augmentation.

TABLE II
INTERVAL MEAN ACCURACY OF THE SEQUENTIAL

NETWORK IN TERMS OF DIFFERENT TRAINING
PROCEDURES FOR JPEG CIFAR-10.

End-to-end Training in order*

Acc(1, 100) 0.780 0.840
* It is the same as “Seq (res)” in Table VI.

TABLE III
COMPARISON OF NETWORKS IN TERMS OF INCORPORATING A
RESTORATION AND TRAINING DATA FOR A CLASSIFICATION.

Name Cla (org) Cla (deg) Seq (org) Seq (res)
Restoration - - X X

Training data Original Degraded* Original Restored
* “Degraded” means JPEG in the case of JPEG distortion.

TABLE IV
CPSNR [dB] OF RESTORATION AND ESTIMATION OF DEGRADATION

LEVELS FOR JPEG CIFAR-10.

Degradation level 10 30 50 70 90
Degradation* 23.28 26.73 28.25 29.82 33.65
Restoration 24.29 27.91 29.45 31.00 34.51

Estimated level 10.67 31.15 49.89 68.73 90.59
Standard deviation 1.17 2.70 3.53 3.03 1.65
* Degradation and degradation level denote JPEG distortion and the

JPEG quality factor, respectively. JPEG compression is applied to
CIFAR-10 test images with each JPEG quality factor.

A. Datasets and data augmentation

Three datasets were used to train both the restoration
network and the estimation network of degradation levels;
Yang91 [36], Urban100 [37], and General100 [38]. We gen-
erated 64 × 64 sized patches from each image and applied
data augmentation to them by using transpose, horizontal, and
vertical flips. Then, JPEG compression was applied to the
patches, where JPEG quality factors were randomly sampled
from 1 to 1002.

The CIFAR datasets [28] were used to train the classification
networks and the estimation network of ensemble weights.
Data augmentation was applied to the CIFAR images; zoom,
shearing, horizontal flip, rotation, vertical, and horizontal
shifts. After that, JPEG compression was also applied to each
image in the same way mentioned above. We denote these
compressed CIFAR images as “JPEG CIFAR”.

B. Interval mean accuracy

We use an interval mean accuracy as a metric to evaluate the
classification performance of images degraded with different

2The details of the JPEG compression algorithm depend on the library.
Python Image Library(PIL) was used for JPEG compression. Note that
the images compressed with the JPEG quality factor 100 also have JPEG
distortion.

TABLE V
COMPARISON OF THE PROPOSED ENSEMBLE NETWORKS IN TERMS OF

WEIGHT FUNCTIONS AND FINE-TUNING.

Name wq (fix)* wf,q (fix) wq (tune) wf,q (tune)
Weight function wq wf,q wq wf,q

Fine-tuning** - - X X
* wq (fix) has been proposed in the previous study[18].
** wq (fix) and wf,q (fix) are fine-tuned, respectively.

degradation levels. The following definition of the interval
mean accuracy has been introduced in [11].

Acc (θ;Ql, Qu)
def
=

∑u
i=lAcc (g(D (X, Qi) ;θ),Y)

|u− l + 1|
,

where {Qi ∈ R1|i ∈ Z} denotes degradation levels, D(X, Q)
is a degradation operator with a degradation level Q for clean
images X, g(·;θ) represents a classification network with
parameters θ, Y represents true labels for X, and Acc is
an accuracy. The accuracy is a ratio dividing the number of
predicted class labels, which coincide with correct class labels,
by the number of all test samples.

Accuracies for each degradation level have some fluctua-
tions, even if the degradation levels are adjacent. The interval
mean accuracy can remove those fluctuations by averaging
accuracies over some degradation levels. For example, it is also
easier to understand the tendency of a classification network
over different degradation levels by dividing the whole range
of degradation levels into low-quality, middle-quality, and
high-quality. Therefore, the interval mean accuracy helps to
compare the performance of different classification networks.

C. Preliminary experiments

Two preliminary experiments are presented here. One is
to confirm the performance of the classification network that
we used. The other is to explain why the proposed ensemble
network is not trained in an end-to-end manner.

We trained our classification network with original CIFAR-
10. Table I shows the classification accuracy of original
CIFAR-10 test data. The accuracy of our classification network
is 0.914. It is almost the same level as reported in [32]. Our
classification network is not state-of-the-art but enough level
for the experiments of following subsections.

For the second experiment, we focus on the sequential
network composed in the proposed ensemble network as
discussed in III-C. We trained the sequential network, whose
all the weights were randomly initialized, in an end-to-end
manner. Although the sequential network is composed of
a restoration and a classification network, the loss function
only considered the cross-entropy loss without any restoration
losses. Table II shows the interval mean accuracy of JPEG
CIFAR-10 for JPEG quality factors 1 to 100, where training in
order denotes a training procedure proposed in III-B. Training
in order outperforms the end-to-end, as seen in Table II.
Therefore, the proposed ensemble network is not trained in
the end-to-end manner but is trained in order.
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TABLE VI
INTERVAL MEAN ACCURACY OF JPEG CIFAR-10.

Acc of Existing Proposed
(Ql, Qu) Cla (org) Cla (deg) Seq (org) Seq (res) Ens (Cla) wq (fix) [18] wf,q (fix) wq (tune) wf,q (tune)

(1,20) 0.431 0.724 0.569 0.736 0.677 0.737 0.737 0.744 0.745
(21,40) 0.700 0.844 0.802 0.852 0.825 0.855 0.859 0.855 0.860
(41,60) 0.763 0.857 0.849 0.864 0.844 0.870 0.875 0.869 0.876
(61,80) 0.799 0.866 0.874 0.870 0.858 0.883 0.885 0.877 0.886
(81,100) 0.861 0.874 0.902 0.878 0.885 0.903 0.902 0.895 0.902
(1,100) 0.711 0.833 0.799 0.840 0.818 0.850 0.852 0.848 0.854

Fig. 3. Accuracy of JPEG CIFAR-10.

D. Performance analysis of classification networks for de-
graded images

We compare the performance of four networks summarized
in Table III. “Cla (org)” and “Cla (deg)” are classification
networks only trained by using original CIFAR-10 and JPEG
CIFAR-10, respectively. “Seq (org)” and “Seq (res)” are
sequential networks, where their classification networks are
trained by using original CIFAR-10 and restored images of
JPEG CIFAR-10, respectively. Table IV shows the color peak
signal-to-noise ratio (CPSNR) of both JPEG CIFAR-10 images
and images restored by the restoration network we used. Some
samples of both JPEG CIFAR-10 and restored images can be
seen in Fig. 11.

Figure 3 and Table VI show the accuracy and the interval
mean accuracy of JPEG CIFAR-10, respectively. “Cla (org)”
shows low performance under the existence of JPEG distor-
tion. “Seq (org)”, which incorporates the restoration network
before “Cla (org)”, outperforms “Cla (org)” for all JPEG
quality factors. It shows that the restoration network helps “Cla
(org)” to classify degraded images. However, “Seq (org)” does
not show enough performance for low quality factors when
comparing to “Cla (deg)” which is directly trained with JPEG
CIFAR-10. “Cla (deg)” shows roughly better performance than
“Cla (org)”, but worse for the quality factors over around
95. On the other hand, “Seq (res)” slightly outperforms “Cla
(deg)” for all JPEG quality factors, but still underperforms
“Cla (org)” for high quality factors. When comparing “Seq
(res)” and “Seq (org)”, “Seq (res)” is better than “Seq (org)”
for the quality factors under around 70, but worse over it.
Therefore, as for high-quality images, the classification net-
work trained with clean images outperforms the classification
networks trained with degraded images or restored images

whether the restoration network is incorporated or not.
The best network of existing approaches is “Seq (res)” for

the quality factors under around 70, “Seq (org)” for over
it. That is, the sequential networks outperform classification
networks only.

E. Performance analysis of ensemble networks

The proposed ensemble network uses two sequential net-
works that have a classification network trained with clean
images and one trained with restored images. These sequential
networks could outperform classification networks only, as
shown in IV-D. Therefore, using these sequential networks
is reasonable for ensemble learning.

Table V shows four ensemble networks compared in terms
of weight functions and fine-tuned ensemble networks. There
are two weight functions defined by Eqs. (1) and (2). “wq (fix)”
and “wf,q (fix)” denote ensemble networks which can train an
estimation network of ensemble weights only, where weight
functions are wq and wf,q, respectively. “wq (tune)” and “wf,q

(tune)” are fine-tuned networks of “wq (fix)” and “wf,q (fix)”,
respectively. Fine-tuned networks mean to retrain both an
estimation network of ensemble weights and a classification
network trained with restored images. “Ens (Cla)” is also
analyzed in addition to four ensemble networks. “Ens (Cla)”
denotes an ensemble network, as shown in Fig. 1-(c), whose
decision is taken by the maximum probability of “Cla (org)”
or “Cla (deg)”. Table IV also shows the performance of an
estimation network for JPEG quality factors which we used.

At first, the proposed method is compared with existing
methods; “Seq (org)”, “Seq (res)”, and “Ens (Cla)”. The
proposed method includes four ensemble networks, as shown
in Table V. Here, “wq (fix)” is used for the comparison with
existing methods because “wq (fix)” is the simplest of four
proposed ensemble networks. Figure 3 and Table VI show
that “wq (fix)” outperforms both “Seq (org)” and “Seq (res)”
for almost all JPEG quality factors. Moreover, “wq (fix)”
outperforms “Ens (Cla)”.

Now, four ensemble networks of the proposed method are
compared. To confirm the effect of weight functions, “wq

(fix)” is compared with “wf,q (fix)”. “wf,q (fix)” slightly
outperforms “wq (fix)” for quality factors under around 90, as
shown in Fig. 3. Therefore, considering features of restored
images in the weight function contributes to improve the
classification performance.

Finally, the effect of fine-tuning is confirmed for “wq (fix)”
and “wf,q (fix)”. “wf,q (tune)” outperforms “wf,q (fix)” for
almost all degradation levels. However, “wq (tune)” underper-
forms “wq (fix)” for three intervals over the quality factor 41,
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TABLE VII
ACCURACY OF JPEG CIFAR-10 FOR EACH JPEG QUALITY

FACTOR.

JPEG Wan Proposed
quality factor [7]∗ wq (fix) [18] wf,q (tune)

10 0.703 0.777 0.785
20 0.748 0.832 0.838
30 0.763 0.858 0.863
40 0.770 0.863 0.871
50 - 0.871 0.878
60 - 0.876 0.882
70 - 0.885 0.888
80 - 0.888 0.890
90 - 0.902 0.900

100 - 0.916 0.908
* Wan et al. presented numerical results for JPEG quality

factors under 40 in their paper [7].

Fig. 4. The mean and standard deviation (1σ) of inferred ensemble weights
for the classification network trained with restored images in the case of JPEG
CIFAR-10, where 1σ interval was truncated by the maximum weight 1.

as shown in Table VI. The results show that fine-tuning is
effective for “wf,q (fix)”.

That is, “wf,q (tune)” outperforms other networks for almost
all quality factors under around 90, as shown in Fig. 3.
However, “wf,q (tune)” underperforms “wq (fix)” for quality
factors over around 90. This is also confirmed from the
accuracies of JPEG CIFAR-10 for each JPEG quality factor,
as shown in Table VII. Table VII also shows that “wq (fix)”
and “wf,q (tune)” outperform Wan [7] for low quality factors.
The results show that the proposed ensemble networks “wf,q

(tune)” and “wq (fix)” can classify both high-quality and low-
quality images well.

F. Analysis of ensemble weights

Here, we analyse how ensemble weights are inferred when
changing JPEG quality factors. Two ensemble networks, which
are “wf,q (tune)” and “wq (fix)”, are focused on this analysis
because the networks show good performance as explained
in IV-E. Figure 4 shows mean and standard deviation of in-
ferred ensemble weights for the classification network trained
with restored images in the case of JPEG CIFAR-10. The
mean and standard deviation of inferred ensemble weights are
calculated over all test data of JPEG CIFAR-10 for each JPEG
quality factor. We used 1σ interval as the standard deviation
which was truncated by the maximum ensemble weight 1.

TABLE VIII
INTERVAL MEAN ACURRACY OF JPEG CIFAR-100.

Acc of
Existing Proposed

Cla Cla Seq Seq Ens wq wf,q

(Ql,Qu) (org) (deg) (org) (res) (Cla) (fix)[18] (tune)
(1,20) 0.202 0.448 0.324 0.453 0.391 0.454 0.461

(21,40) 0.407 0.561 0.493 0.564 0.540 0.572 0.581
(41,60) 0.465 0.577 0.545 0.579 0.567 0.594 0.603
(61,80) 0.504 0.583 0.582 0.586 0.580 0.611 0.617
(81,100) 0.582 0.591 0.628 0.592 0.616 0.637 0.638
(1,100) 0.432 0.552 0.514 0.555 0.539 0.573 0.580

Fig. 5. Accuracy of JPEG CIFAR-100.

The mean of inferred ensemble weights roughly decreases
as JPEG quality factors increase for “wf,q (tune)” and “wq

(fix)”. In other words, ensemble weights of the classification
network trained with restored images are decreasing, and
those of the classification network trained with clean images
are increasing for high-quality images. It is quite reasonable
because “Seq (org)” outperforms “Seq (res)” for high-quality
images, as shown in IV-D. The slope of “wq (fix)” is sharper
than that of “wf,q (tune)”. It shows that “wq (fix)” is more
sensitive to JPEG quality factors than “wf,q (tune)”.

“wf,q (tune)” has bigger standard deviations of inferred
ensemble weights than “wq (fix)”. That is because there are
two sources of fluctuation in wf,q; a feature extracted from
the classification network trained with restored images and an
estimated quality factor. On the other hand, wq has the only
source of fluctuation which is the estimated quality factor of
a JPEG image. The result indicates that the weight function
“wf,q” can reflect the feature of each image in inferring
ensemble weights.

G. Experiments for CIFAR-100 dataset

We confirm the effectiveness of the proposed method for
JPEG CIFAR-100 as another dataset in the case of JPEG
distortion. Figure 5 and Table VIII show the accuracy and
the interval mean accuracy of JPEG CIFAR-100, respectively.
“wf,q (tune)” outperforms the other networks for almost all
JPEG quality factors including high quality factors. Thus, the
proposed method is also effective for JPEG CIFAR-100.
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TABLE IX
INTERVAL MEAN ACURRACY OF JPEG STL-10.

Acc of
Existing Proposed

Cla Cla Seq Seq Ens wq wf,q

(Ql,Qu) (org) (deg) (org) (res) (Cla) (fix)[18] (tune)
(1,20) 0.522 0.595 0.524 0.602 0.579 0.605 0.605
(21,40) 0.636 0.667 0.652 0.671 0.671 0.682 0.682
(41,60) 0.647 0.676 0.670 0.680 0.680 0.694 0.696
(61,80) 0.656 0.683 0.680 0.687 0.687 0.702 0.706

(81,100) 0.687 0.688 0.698 0.692 0.706 0.712 0.716
(1,100) 0.630 0.662 0.645 0.666 0.664 0.679 0.681

Fig. 6. Accuracy of JPEG STL-10.

H. Experiments for STL-10 dataset

Here, the effectiveness of the proposed method is confirmed
for the STL-10 [27] dataset. The STL-10 dataset includes pairs
of 96× 96 images and their labels. We used 5,000 annotated
images for training data and 8,000 annotated images for test
data. The STL-10 images without annotations were not used.
The STL-10 images are resized into 32 × 32 images from
96 × 96 images. Then, JPEG compression is applied to the
resized STL-10 images by changing the JPEG quality factors
from 1 to 100. We call the images “JPEG STL-10” as with the
CIFAR images. Figure 12 shows sample images of both JPEG
STL-10 and restored images. We used the same pre-trained
networks for both an image restoration and an estimation of
degradation levels as the case of JPEG CIFAR.

Figure 6 and Table IX show the accuracy and the interval
mean accuracy of JPEG STL-10, respectively. The proposed
method “wf,q (tune)” outperforms other networks for almost
all quality factors as with JPEG CIFAR. Therefore, the pro-
posed method is effective for not only the CIFAR dataset but
also the STL-10 dataset.

V. APPLICATIONS FOR OTHER DEGRADATION

Here, we demonstrate some applications of the proposed
method. The proposed method is applicable to not only
JPEG distortion but also other degradations. We confirmed
the additive Gaussian noise and Gaussian blur as examples of
other degradations, where CIFAR-10 and CIFAR-100 datasets
were used.

TABLE X
CPSNR [dB] OF RESTORATION AND ESTIMATION OF DEGRADATION

LEVELS FOR GAUSSIAN NOISY CIFAR-10.

Degradation level 10 20 30 40 50
Degradation* 28.13 22.11 18.59 16.09 14.15
Restoration 33.47 29.74 27.58 26.05 24.87

Estimated level 10.03 20.11 30.16 40.11 49.26
Standard deviation 0.40 0.45 0.57 0.72 0.54
* Degradation and degradation level denote the additive Gaussian noise

and its noise level, respectively. The Gaussian noise is added to
CIFAR-10 test images with each noise level.

TABLE XI
INTERVAL MEAN ACCURACY OF GAUSSIAN NOISY CIFAR-10.

Acc of
Existing Proposed

Cla Cla Seq Seq Ens wq wf,q

(Ql,Qu) (org) (deg) (org) (res) (Cla) (fix)[18] (tune)
(0,10) 0.796 0.851 0.903 0.862 0.838 0.904 0.905

(11,20) 0.328 0.844 0.883 0.852 0.509 0.889 0.893
(21,30) 0.138 0.829 0.848 0.838 0.271 0.865 0.874
(31,40) 0.106 0.809 0.797 0.821 0.198 0.835 0.848
(41,50) 0.101 0.785 0.740 0.798 0.173 0.804 0.823
(0,50) 0.304 0.824 0.835 0.835 0.406 0.860 0.869

Fig. 7. Accuracy of Gaussian noisy CIFAR-10.

A. Additive Gaussian noise

We applied the proposed method for the additive Gaussian
noise. A degradation operator was just replaced from JPEG
compression to Gaussian noise. We added CIFAR images and
Gaussian noise whose noise level changed from 0 to 50 in 1.0
steps, where the noise level is a standard deviation of Gaussian
distribution for the 8-bit image. We call the images “Gaussian
noisy CIFAR”. Table X shows the CPSNR of restored images
and the estimation of the Gaussian noise level for Gaussian
noisy CIFAR-10. Some examples of both Gaussian noisy
CIFAR-10 and restored images can be seen in Fig. 13.

Figure 7 and Table XI show the accuracy and the interval
mean accuracy of Gaussian noisy CIFAR-10, respectively.
Figure 8 and Table XII show the accuracy and the interval
mean accuracy of Gaussian noisy CIFAR-100, respectively.
“wf,q (tune)” outperforms the other networks for the Gaussian
noisy CIFAR.



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, JUNE 2020 9

TABLE XII
INTERVAL MEAN ACCURACY OF GAUSSIAN NOISY CIFAR-100.

Acc of
Existing Proposed

Cla Cla Seq Seq Ens wq wf,q

(Ql,Qu) (org) (deg) (org) (res) (Cla) (fix)[18] (tune)
(0,10) 0.505 0.566 0.640 0.574 0.585 0.644 0.644
(11,20) 0.139 0.560 0.612 0.569 0.458 0.620 0.623
(21,30) 0.052 0.548 0.564 0.557 0.411 0.587 0.597
(31,40) 0.029 0.528 0.509 0.536 0.290 0.553 0.567
(41,50) 0.014 0.506 0.453 0.515 0.166 0.524 0.539
(0,50) 0.155 0.542 0.557 0.551 0.386 0.587 0.595

Fig. 8. Accuracy of Gaussian noisy CIFAR-100.

TABLE XIII
CPSNR [dB] OF RESTORATION AND ESTIMATION OF DEGRADATION

LEVELS FOR GAUSSIAN BLURRING CIFAR-10.

Degradation level 1.0 2.0 3.0 4.0 5.0
Degradation* 25.73 21.27 19.46 18.39 17.66
Restoration 31.58 27.56 24.88 23.06 21.52

Estimated level 1.04 1.51 2.98 3.99 4.84
Standard deviation 0.08 0.08 0.09 0.11 0.07
* Degradation and degradation level denote the Gaussian blur and the

standard deviation of its kernel, respectively. The Gaussian blur is
applied to CIFAR-10 test images with each degradation level.

B. Gaussian blur

The next application is the case of Gaussian blur. We
applied the Gaussian blurring filter to CIFAR images, where
the standard deviation of its kernel changed from 0 to 5
in 0.1 steps. We call the filtered images “Gaussian blurring
CIFAR”. Table XIII shows the CPSNR of restored images and
the estimated standard deviations of the Gaussian blur kernel
for Gaussian blurring CIFAR-10. There are some examples
of both Gaussian blurring CIFAR-10 and restored images in
Fig. 14.

Figure 9 and Table XIV show the accuracy and the interval
mean accuracy of Gaussian blurring CIFAR-10, respectively.
Figure 10 and Table XV show the accuracy and the interval
mean accuracy of Gaussian blurring CIFAR-100, respectively.
Unlike the case of JPEG and Gaussian noise, “Cla (org)”
shows good performance for high-quality images as shown
in Fig. 9 and Fig. 10 because the blurring effect of high-
quality images is very small. However, “wf,q (tune)” almost
outperforms the other networks for the Gaussian blurring
CIFAR. Thus, the proposed method is also effective for the

TABLE XIV
INTERVAL MEAN ACCURACY OF GAUSSIAN BLURRING CIFAR-10.

Acc of
Existing Proposed

Cla Cla Seq Seq Ens wq wf,q

(Ql,Qu) (org) (deg) (org) (res) (Cla) (fix)[18] (tune)
(0,1.0) 0.883 0.856 0.905 0.883 0.900 0.912 0.909

(1.1,2.0) 0.373 0.841 0.861 0.872 0.823 0.886 0.889
(2.1,3.0) 0.208 0.807 0.679 0.846 0.792 0.849 0.852
(3.1,4.0) 0.183 0.766 0.445 0.807 0.748 0.808 0.812
(4.1,5.0) 0.171 0.722 0.293 0.758 0.698 0.758 0.768
(0,5.0) 0.374 0.799 0.642 0.834 0.794 0.844 0.847

Fig. 9. Accuracy of Gaussian blurring CIFAR-10.

TABLE XV
INTERVAL MEAN ACCURACY OF GAUSSIAN BLURRING CIFAR-100.

Acc of
Existing Proposed

Cla Cla Seq Seq Ens wq wf,q

(Ql,Qu) (org) (deg) (org) (res) (Cla) (fix)[18] (tune)
(0,1.0) 0.609 0.528 0.638 0.588 0.624 0.652 0.652

(1.1,2.0) 0.163 0.526 0.563 0.579 0.401 0.605 0.609
(2.1,3.0) 0.055 0.500 0.408 0.558 0.353 0.564 0.567
(3.1,4.0) 0.035 0.467 0.256 0.521 0.338 0.523 0.531
(4.1,5.0) 0.030 0.424 0.149 0.471 0.301 0.471 0.484
(0,5.0) 0.187 0.490 0.407 0.544 0.408 0.565 0.570

Fig. 10. Accuracy of Gaussian blurring CIFAR-100.

case of Gaussian blur.

VI. CONCLUSIONS

This paper has proposed the ensemble network which shows
higher performance for various degradation levels. Firstly,
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Degradation level Original 90 70 50 30 10

Degraded

Restored

Fig. 11. JPEG CIFAR-10 images and their restored images. The degradation level means the JPEG quality factor.

Degradation level Original 90 70 50 30 10

Degraded

Restored

Fig. 12. JPEG STL-10 images and their restored images. The degradation level means the JPEG quality factor.

Degradation level Original 10 20 30 40 50

Degraded

Restored

Fig. 13. Gaussian noisy CIFAR-10 images and their restored images. The degradation level means the Gaussian noise level.

we confirmed that two sequential networks, which are incor-
porating a restoration network into a classification network,
outperform the classification networks only trained with clean
or degraded images. Then, we also found the sequential net-
work shows the different performance depending on an image-
quality of training data for classification networks. Based on
the results, the proposed network was constructed by using
ensemble learning of the sequential networks. The ensemble
weights of the proposed network were automatically inferred
depending on both the estimated degradation levels and the

features of each image extracted from the classification net-
work trained with restored images. The result showed that the
proposed network infers the ensemble weights suitably when
changing degradation levels. Finally, we have shown that the
proposed network is effective for not only the JPEG distortion
but also the additive Gaussian noise and the Gaussian blur.

A further practical extension of the proposed method is
to cope with the mixture of some degradations because the
type of degradation is not necessarily unique. Moreover, the
proposed method can be applied to other degradations. These
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Degradation level Original 1.0 2.0 3.0 4.0 5.0

Degraded

Restored

Fig. 14. Gaussian blurring CIFAR-10 images and their restored images. The degradation level means the standard deviation of the Gaussian blur kernel.

remaining tasks would be our future work.
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