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ABSTRACT
Most consumer digital cameras employ a single-chip image
sensor with a color filter array (CFA), where the purpose of
an in-camera imaging pipeline is to generate a noise-free and
color-corrected standard RGB image from mosaic CFA RAW
data. The joint design of camera spectral sensitivity (CSS)
and the imaging pipeline has great potential to derive better
imaging quality. However, since there is a trade-off between
the robustness to noise and the accuracy of color reproduc-
tion, one fixed CSS cannot realize optimal imaging in terms
of both aspects under various noise levels. Thus, in this pa-
per, we propose noise-aware imaging using camera prefilters
for each noise level, where we jointly design the spectral sen-
sitivity of the prefilters, that of CFA, and imaging networks
to realize optimal imaging in all noise levels. Experimental
results under various noise levels demonstrate that our imag-
ing method using the prefilters outperforms existing methods
based on a fixed CSS.

Index Terms— Camera spectral sensitivity, camera imag-
ing pipeline, camera prefilter

1. INTRODUCTION

Most consumer digital cameras employ a single-chip im-
age sensor with Bayer color filter array (CFA) [1]. The data
captured using a CFA is called CFA RAW data, which con-
sist of a mosaic pattern of RGB values. The CFA RAW data
are processed through an in-camera imaging pipeline, which
includes demosaicking [2, 3], denoising [4, 5], and color cor-
rection [6, 7], where the purpose is to generate a noise-free
and color-corrected standard RGB (sRGB) [8] image.

It is well known that the design of camera spectral sen-
sitivity (CSS) affects the color reproduction accuracy. Based
on this, many studies have been conducted to design a CSS
to improve colorimetric accuracy [9, 10]. As another target,
the optimal design of a CSS for hyperspectral reconstruction
from an RGB image has also been studied [11, 12].

Regarding the CSS design, it is also known that there
is a trade-off between the robustness to noise and the accu-
racy of color reproduction. Empirically, a broader CSS is
more robust to noise, but it brings lower color accuracy. Al-
though some existing studies analyze this trade-off to design
a CSS [13, 14], it is practically infeasible to design one fixed
CSS that realizes high-quality imaging under a wide range
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Fig. 1: Our imaging setup with switchable prefilters, where
we jointly design the spectral transmittance of the prefilters,
the camera spectral sensitivity of the CFA (Base CSS), and
imaging networks associated with each prefilter.

of noise-level conditions. Thus, ideally, the CSS should be
adaptive to each noise-level condition. However, it is also in-
feasible because the CSS is not changeable at each capturing
time once it is fabricated.

In this paper, we propose a new design method for optimal
noise-aware imaging using camera prefilters, which are eas-
ily switchable in front of the camera lens according to each
noise-level condition, as illustrated in Fig. 1. Although the
idea of designing a prefilter has already been introduced in
some recent studies [15, 16], they only optimize the spectral
transmittance of the prefilter based on a mathematical model
such as Luther condition. In contrast, we adopt a deep learn-
ing framework and propose a new method to jointly design
the spectral transmittance of the prefilter, the CSS of the CFA
as a base CSS, and an imaging network to produce a final
sRGB image. Experimental results under various noise lev-
els demonstrate that our imaging method using the prefilters
outperforms existing methods based on a fixed CSS.

2. PROPOSED METHOD

Figure 2 shows the overall pipeline of our method, which
consists of three steps. The first step is to derive target ref-
erence CSSs for each noise level. This is performed by the
joint training of a CSS and an imaging network for each given
noise level. The resultant CSS of the joint training is regarded
as an ideal CSS for each noise level. The second step is to
jointly optimize the spectral sensitivity of the prefilters for
every considered noise level and that of the CFA as a fixed
base CSS, so that the differences between the resultant equiv-
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Fig. 2: The overall flow of our method for the joint design of the prefilters, the base CSS, and the imaging networks associated
with each prefilter. In the first and the third steps, the parameters in the red boxes are optimized by a deep learning framework.

alent CSSs and the reference CSSs from the first step are min-
imized. Finally, using the equivalent CSSs from the second
step, the third step performs the re-training of imaging net-
works associated with each equivalent CSS. We describe the
details of each step below.

2.1. Reference CSSs training

It is known that an optimal CSS depends on the noise
level. Also, an imaging pipeline should be optimized for the
used CSS. Thus, in the first step, we jointly train a CSS and
an imaging network for each noise level to derive a target ref-
erence CSS. As the results of the joint training for each noise
level, we obtain reference CSSs for the set of assumed noise
levels (σ = 0, 1, 2, 5, 10, 20, 30, in our experiments).

The top row of Fig. 2 shows the flow of the joint training,
for which we follow the training approach of [12]. The net-
work input is a hyperspectral image, which is first converted
to a camera RGB image by a convolution layer with 1×1-
sized kernel whose weights correspond to a CSS. Then, the
camera RGB image is mosaicked according to the Bayer pat-
tern to generate CFA RAW data. After adding random Gaus-
sian noise with a considered noise level to the CFA RAW data,
an imaging network is applied to convert the noisy CFA RAW
data to an output sRGB image, where the imaging network
performs the processes such as demosaicking, denoising, and
color correction. The CSS layer and the imaging network are

jointly trained in an end-to-end manner to minimize the differ-
ence between the output and the ground-truth sRGB images.

2.2. Joint optimization of prefilters and a base CSS

In the previous step, we have obtained the reference CSSs
optimized for each noise level. However, as discussed in the
introduction section, it is infeasible to change the CSS of the
on-ship CFA at each capturing time. Thus, in the second step,
we jointly optimize the prefilters and the CSS of the CFA as
a fixed base CSS.

The middle row of Fig. 2 illustrates the joint optimization
approach, where we minimize the differences between equiv-
alent CSSs and reference CSSs. The equivalent CSS can be
represented by the wavelength-by-wavelength product of the
prefilter transmittance and the base CSS. It can be changed
based on the noise level at each capturing time by switching
the prefilter in front of the camera lens. The joint optimization
of the prefilters and the base CSS is performed by minimizing
the following cost function.

E =
∑

n∈ΩN

∑
c∈Ωc

∑
λ∈Ωλ

(fλ,n × bλ,c − rλ,c,n)
2
,

s.t.max
c

bλ,c = 1 , (1)

where λ is the wavelength, Ωλ is a set of discretized wave-
lengths, c represents a color channel, Ωc is a set of channels



{R,G,B}, n is the noise level, ΩN is a set of noise levels to
be considered, fλ,n is the prefilter transmittance of the wave-
length λ for noise level n, bλ,c is the base CSS of the wave-
length λ for c-channel, and rλ,c,n is the reference CSS of the
wavelength λ for c-channel and for noise level n.

The minimization of Eq. (1) can be performed by an al-
ternative optimization, where we apply an alternative process
to find the optimal prefilters for the given base CSS and ref-
erence CSSs and then find the optimal base CSS for the given
prefilters and reference CSSs. In the optimization, we put the
condition for the max sensitivity of the base CSS to maximize
the signal-to-noise ratio.

2.3. Imaging network training

In the previous step, we have designed the prefilters and
the base CSS so that we can adaptively change the equiva-
lent CSSs. Since the equivalent CSSs obtained in the previ-
ous step are not exactly the same as the reference CSSs, we
retrain the imaging networks for each equivalent CSS in the
last step. The bottom row of Fig. 2 shows the training process.
Although the overall pipeline is the same as the first step of
Sec. 2.1, we here fix the CSS layer as the equivalent CSS and
only train the imaging network.

In the application phase, we select the prefilter according
to the noise level and apply the imaging network trained using
the associated equivalent CSS.

3. EXPERIMENTAL RESULTS

3.1. Datasets and training details

We evaluated the proposed method with two hyperspec-
tral datasets of CAVE [17] and TokyoTech [18]. We have
developed the prefilters, the base CSS, and the imaging net-
works for each dataset because those datasets have different
wavelength ranges. The CAVE and the TokyoTech datasets
include 32 and 30 scenes, respectively. We used eight scenes
of each dataset for the testing, and the rest scenes for the train-
ing. For the imaging network, we used the U-net architec-
ture [19]1. We assumed CIE D65 as illumination and applied
a zero-mean Gaussian noise model as in [13].

We trained our networks with 128×128-sized image
patches while we evaluated for the whole image in the test
phase. In the training batch generation, we randomly sam-
pled four different images from the training data. Then, we
generated 32 total image patches by cropping eight image
patches from each sampled image. For the data augmenta-
tion, we randomly applied three geometrical transformations:
horizontal flip, vertical flip, and transpose.

1Our code will be available on our project page: http://www.ok.
sc.e.titech.ac.jp/res/OptimalFilter/index.html
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Fig. 3: Examples of the reference CSSs, the prefilters, the
base CSS, and the equivalent CSSs obtained by our method
for the CAVE dataset, where red, green, and blue lines repre-
sent the color CSSs and the black line represents the prefilters.

3.2. Designed prefilters and a base CSS

The first row of Fig. 3 shows the reference CSSs, which
are obtained by the joint training process of our first step using
the CAVE dataset. We can observe that the joint training pro-
cess makes the shape of the reference CSS wider for a larger
noise level, which is reasonable in the sense of signal-to-noise
ratio. The second row in Fig. 3 shows the prefilters and the
base CSS derived by our second step, where red, green, and
blue lines represent the base CSS and the black line repre-
sents the prefilters. The third row in Fig. 3 shows the equiva-
lent CSSs, which are the product of the prefilters and the base
CSS. From the results, we can confirm that the shapes of the
equivalent CSSs are sufficiently close to the reference CSSs.

3.3. Comparisons with other methods based on fixed CSSs

We compared the proposed method with other methods
based on existing CSSs. As for the existing CSSs for compar-
ison, we selected the CSSs of Sony NEX-5N, Canon 300D,
and Olympus E-PL2 from the CSS database of [20]. For
the imaging process of the existing CSSs, we applied signal-
processing-based and network-based imaging methods. The
signal-processing-based imaging (SP) consists of the sequen-
tial applications of residual interpolation [3] for demosaick-
ing, block-matching and 3D filtering (BM3D) [4] for denois-
ing, and standard linear color correction [6]. For the network-
based imaging (Net), we applied the same U-net architec-
ture [19] as the proposed method and trained the imaging net-
works for each existing CSS.

We visually compare the output sRGB images in Fig. 4
and Fig. 5. In both figures, the top row shows the output
images and the bottom row shows the RMSE maps com-
pared with the ground-truth images. The darker the color
of the RMSE map, the lower the error between the output
and ground-truth images. To provide a visual reference for
the strength of the noise, we included the Noisy case in the
comparison, which is the resulting image of applying residual
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Fig. 4: Visual comparisons and RMSE maps of CAVE dataset for noise level σ = 30, where Noisy, SP, and Net represent
signal processing imaging without denoising, signal processing imaging, and network-based imaging, respectively.
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Fig. 5: Visual comparisons and RMSE maps of TokyoTech dataset for noise level σ = 10, where Noisy, SP, and Net represent
signal processing imaging without denoising, signal processing imaging, and network-based imaging, respectively.

Table 1: Numerical comparisons of CAVE dataset, where
Noisy, SP, and Net represent signal processing imaging with-
out denoising, signal processing imaging, and network-based
imaging, respectively.

Metric Noise
level

Sony Canon Olympus OursNoisy SP Net SP Net SP Net

CPSNR

0 43.16 43.16 46.37 43.19 47.02 41.51 45.61 48.07
1 41.61 42.20 45.46 42.61 45.82 41.28 44.88 46.94
2 39.29 40.95 44.17 41.81 44.70 40.90 44.12 46.08
5 33.95 37.77 41.63 39.46 42.35 39.59 42.51 43.59
10 28.70 34.03 39.11 36.32 40.35 37.57 40.52 41.17
20 23.07 29.52 36.50 32.21 37.52 34.29 37.99 38.54
30 19.81 26.66 34.39 29.48 35.73 31.82 36.55 36.94

Avg. 32.80 36.33 41.09 37.87 41.93 38.14 41.74 43.05

SSIM

0 0.986 0.986 0.995 0.987 0.996 0.982 0.994 0.997
1 0.981 0.983 0.994 0.985 0.995 0.981 0.994 0.997
2 0.970 0.978 0.993 0.982 0.993 0.980 0.990 0.996
5 0.901 0.958 0.987 0.971 0.989 0.974 0.988 0.992
10 0.783 0.914 0.980 0.943 0.982 0.958 0.983 0.988
20 0.578 0.830 0.966 0.877 0.972 0.908 0.973 0.979
30 0.435 0.762 0.953 0.814 0.957 0.850 0.959 0.972

Avg. 0.805 0.916 0.981 0.937 0.983 0.948 0.983 0.989

interpolation for demosaicking and linear color correction,
but without applying any denoising method. From the vi-
sual comparison, we can confirm that the proposed method
effectively suppresses the other methods at both σ = 30 and
σ = 10. Additional comparisons can be seen in a supplemen-
tary material available on our project page (see footnote 1).

Tables 1 and 2 summarize the numerical comparisons for
CAVE and TokyoTech datasets in color peak signal-to-noise
ratio (CPSNR) and structural similarity index (SSIM) [21].
Both metrics represent higher is better. Those comparisons
demonstrate that our proposed method outperforms existing
methods in all the noise levels for both datasets.

Table 2: Numerical comparisons of TokyoTech dataset,
where Noisy, SP, and Net represent signal processing imaging
without denoising, signal processing imaging, and network-
based imaging, respectively.

Metric Noise
level

Sony Canon Olympus OursNoisy SP Net SP Net SP Net

CPSNR

0 37.75 37.75 42.60 38.74 42.86 35.44 40.44 44.35
1 37.11 37.02 41.10 38.21 42.07 35.30 39.91 43.69
2 35.84 35.97 39.87 37.38 41.03 35.05 39.09 42.41
5 32.01 33.58 36.84 35.33 38.46 34.20 37.57 39.72
10 27.62 31.07 34.79 33.05 35.98 32.91 35.69 37.54
20 22.47 27.93 32.03 30.17 33.45 30.98 33.63 34.56
30 19.34 25.73 30.78 28.18 31.79 29.47 32.30 33.22

Avg. 30.31 32.72 36.86 34.44 37.95 33.34 36.95 39.36

SSIM

0 0.972 0.972 0.992 0.971 0.991 0.967 0.989 0.995
1 0.969 0.969 0.988 0.970 0.989 0.966 0.987 0.994
2 0.960 0.963 0.983 0.966 0.987 0.964 0.986 0.992
5 0.908 0.942 0.970 0.954 0.977 0.956 0.978 0.986
10 0.795 0.906 0.953 0.930 0.965 0.940 0.966 0.974
20 0.600 0.844 0.926 0.883 0.945 0.905 0.949 0.958
30 0.462 0.791 0.910 0.839 0.925 0.868 0.934 0.945

Avg. 0.809 0.912 0.960 0.930 0.968 0.938 0.970 0.978

4. CONCLUSION

In this paper, we have proposed a novel method for noise-
aware imaging using switchable prefilters. To derive optimal
imaging based on a deep learning framework, we have pro-
posed a method for jointly designing the spectral transmit-
tance of the prefilters, the CSS of the CFA, and the imaging
networks associated with each prefilter. We have experimen-
tally validated that the proposed imaging method using the
prefilters outperforms the existing imaging methods based on
a fixed CSS for a wide range of noise levels.
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