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Abstract. Determining whether input data are out-of-distribution (OOD)
is important for real-world applications of machine learning. Various ap-
proaches to OOD detection have been proposed, and there is a growing
interest in evaluating their performance. A commonly employed approach
for OOD detection is training the network model using an in-distribution
(IND) task and then applying a threshold to the probability estimated
of unknown data. However, current evaluation metrics only assess the
OOD detection performance while neglecting the IND task performance.
To address this issue, we propose new evaluation metrics for OOD de-
tection. Our novel metric, the area under the accuracy-accuracy curve
(AUAAC), is designed to simultaneously evaluate both the IND task and
OOD detection performances. Specifically, it calculates the area under
the accuracy-accuracy curve after estimating the accuracy of the IND
task and OOD detection for all thresholds. Flaws within the training
dataset, such as contaminated labels or inaccurate annotations, disturb
the network in properly performing the IND task. Nevertheless, the net-
work may distinguish whether new input data are in IND because it was
priorly exposed to IND data and trained by their features. The proposed
AUAAC can asses such malfunction while existing evaluation metrics
overlook the performance of the IND task and cannot identify such issues.

Keywords: Deep learning · Out-of-distribution detection · Evaluation
metric.

1 Introduction

Learning-based deep neural network methods have demonstrated high perfor-
mance with controlled data in various tasks. Those methods implicitly assume
that training and test data distributions are the same. However, the test data dis-
tribution is often different from that of training data. That mismatch significantly
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degrades the performance. Then, in practice, it is important to detect unexpected
data before using it. This detection task is known as the out-of-distribution
(OOD) detection task [5]. The main task is called as in-distribution (IND) task.
In this paper, we focus on the classification task for the IND task.

Various OOD detection algorithms have been proposed after the OOD de-
tection task was well formulated [5]. One of these approaches is to feed OOD
data to the network during the IND task training phase, so that the network can
learn differences between IND and OOD data [13, 2, 6, 25, 16, 8]. However, those
approaches require IND and OOD data to train the network model. Then, OOD
detection algorithms only require IND datasets have been proposed [14, 15, 19, 1,
3, 20]. The OOD detection performance of the network model is usually evaluated
after training the network model for the IND task, implicitly assuming that the
IND task performance of the network model is good enough. The OOD detection
performance of the network model is usually evaluated after training the network
model for the IND task, implicitly assuming that the IND task performance of
the network model is good enough. However, we can easily improve the OOD
detection performance if we allow the degradation of the IND task performance.
For this reason, it is very important to evaluate simultaneously the IND task
performance and the OOD detection performance.

The true negative rate (TNR) at 95% true positive rate (TPR) is a widely
used metric to evaluate the OOD detection performance. The TPR is defined
by TP/(TP+FN) and the TNR is defined by TN/(TN+FP), where TP, TN,
FP, and FN are the numbers of true positive, true negative, false positive, and
false negative, respectively. IND and OOD data are considered as positive and
negative samples. The metric of the TNR at 95% TPR indicates the probability of
correctly detecting OOD data when the network model can detect the IND data
with 95% accuracy. Scherreik et al. [18] used maximum Youden’s index [23] as a
metric to evaluate the OOD detection performance. Youden’s index is defined by
the sum of TPR and TNR and is usually used to determine the proper parameter
based on Receiver Operatorating Characteristic (ROC) curve. The area under
the receiver operating characteristic curve (AUROC) has become a popular
metric, as it summarizes TPR performance for all possible thresholds and is
insensitive to threshold selection. The ROC curve for calculating AUROC depicts
the relationship between true and false positive rates. An open-set F-score [10]
is recently proposed for a metric to evaluate the OOD detection performance.
Note that those three metrics can evaluate the OOD performance, while they
commonly neglect the classification accuracy of the IND data.

However, in practice, OOD detection is not the final goal of the classification
task. In this sense, we need to evaluate both IND classification accuracy and
OOD detection performance. For example, if the network model has high IND
classification accuracy with low OOD detection performance, that network model
cannot work well in the practical situation because the input data includes
both IND and OOD data. To address this issue, a concise pairwise formulation
called OpenAUC [21] has been proposed for simultaneously evaluating both
the IND task and OOD detection performance. OpenAUC is a concise pairwise
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formulation where each pair consists of IND and OOD data. First, the metric
checks whether the IND data are correctly classified into known IND classes,
then confirms whether the OOD data are detected. This approach allows for a
more comprehensive evaluation of OOD detection methods.

We introduce a new metric called the area under the accuracy-accuracy curve
(AUAAC) which is designed to simultaneously evaluate both the IND task and
OOD detection performance. We first estimate the accuracy of the IND task and
OOD detection for all thresholds. Next, we draw the accuracy-accuracy curve
(AAC), with the OOD detection accuracy on the horizontal axis and the IND
task accuracy on the vertical axis. Finally, we calculate the area under the AAC
(AUAAC) to comprehensively evaluate OOD detection performance.

In order to validate the proposed metrics, we conducted experiments on two
different network models using three IND datasets and five OOD datasets. We
evaluated the OOD detection performance using three metrics: TNR at TPR 95%,
AUROC, and AUAAC. Our analysis confirmed the importance of incorporating
AUAAC to account for IND task performance. The dataset used for the IND task
can potentially contain flaws, such as contaminated labels or incorrect annotations.
When trained with such flawed data, the network may fail to perform correctly
on the IND task. However, the network might still demonstrate an ability to
detect OOD data. This is because the network previously encountered IND data
and was trained by their features, enabling it to recognize characteristics that
observe data as different from the IND. In other words, the network exposed
to IND data allows it to distinguish whether the brand new data are in IND.
Since existing evaluation metrics do not consider the performance of the IND
task, they cannot catch out such malfunctioning networks. This highlights the
importance of considering IND task performance even in OOD detection, and
AUAAC can operate as an evaluation metric for this purpose. Additionally, we
investigated the behavior of AUAAC during the training phase to gain further
insights into its characteristics. Based on the experimental results, we concluded
that the proposed metrics serve as valuable tools for evaluating network models
in terms of both OOD detection and IND task performance.

2 Proposed Metric

Let f : X → RK be a network model which infers the class from an input image,
where X is the input image space and K is the number of classes. The network
model f has parameters to be trained with the training data.

We consider the problem of distinguishing IND and OOD data with a trained
network model. For an input image x, the network model estimates a probability
f(x), and compare with the OOD threshold τ . An input image x is classified as
IND if the maximum probability is greater than the threshold τ as follows:

x is classified as

{
IND (maxf(x) ≥ τ)
OOD (else)

. (1)
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Fig. 1: Calculation flowchart of three metrics.

2.1 Three Accuracy Metrics

First, we review the performance evaluations of the IND classification and the
OOD detection tasks. Here, we consider three accuracies related to the IND
classification and the OOD detection tasks; ACC, ACC-IND, and ACC-OOD.
ACC represents the classical accuracy focusing on the IND classification task only.
ACC-IND is the accuracy of the IND classification task considering the OOD
detection, which is newly introduced in this paper. ACC-OOD is the accuracy of
the OOD detection task. The accuracy can be generally defined by

Accuracy = E(x,t)∼Ω [g(f(x), t)] , (2)

where Ω represents a dataset of the images and the labels, x represents the
image, t is associated ground truth label index, and the function g is refer to
the correctness function which specifies the property of the accuracy. Here, we
consider ground truth label index has a positive integer value for the IND sample
and a negative value for the OOD sample. We will show three different correctness
functions with the dataset are associated to three accuracies of ACC, ACC-IND,
and ACC-OOD.

For ACC which is the accuracy of the classical IND classification task, the
correctness function gACC can be defined by

gACC(y, t) =

{
1 (indmaxy = t)
0 (else)

, (3)
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where indmaxy represents the index of maximum element of y. The correctness
function gACC returns one if the IND classification inference by the network
model is correct. Then, ACC of the classical IND classification accuracy can be
evaluated by Eq. 2 with the correctness function gACC in Eq. 3 and the IND
dataset of ΩIND. The flowchart for calculating ACC can be illustrated in Fig. 1a.

For ACC-OOD which is the OOD detection task, the function gOOD can be
defined by

gOOD(y, t; τ) =

{
1 (t× (maxy − τ) > 0)
0 (else)

. (4)

If the maximum value of inference y is greater than the threshold τ , the associated
sample is estimated as an IND sample. We set the positive integer value for the
label of the IND sample and the negative value for the label of the OOD sample.
Then, the function gOOD in Eq. 4 returns one if the OOD detection inference is
correct. ACC-OOD of the OOD detection accuracy can be evaluated by Eq. 2
with the function gOOD in Eq. 4 and the OOD dataset of ΩOOD, as shown in
Fig. 1b. Based on the equations, it is obvious that the calculation of ACC-OOD
solely relies on the OOD dataset and does not take into account the IND data.

For the practical classification task, we need to evaluate the classification
accuracy considering the OOD detection. Here, we introduce the new accuracy of
ACC-IND (Fig. 1c), which can evaluate the IND classification accuracy after the
OOD detection. If both the IND classification inference and the OOD detection
inference are correct, we consider it to be correct for the ACC-IND. The associated
correctness function of gIND can be defined by

gIND(y, t; τ) = gACC(y, t)× gOOD(y, t; τ) . (5)

For the IND dataset, the function gOOD should be one for the correct inference.
In addition, the IND classification inference should also be correct, or the function
gACC should be one for the correct inference. The function gIND returns ones
if the inference is correct. Then, ACC-IND of the IND classification accuracy
considering the OOD detection can be evaluated by Eq. 2 with the function gIND

in Eq. 5 and the IND dataset of ΩIND. Note that ACC-IND is evaluated based
on the IND dataset ΩIND.

2.2 AUAAC: Area Under Accuracy-Accuracy Curve

We propose a metric to evaluate both the IND classification accuracy and the
OOD detection accuracy, which we call the area under the accuracy-accuracy
curve (AUAAC). The AUAAC is defined based on ACC-IND and ACC-OOD,
which were introduced in the previous section. As mentioned above, ACC-IND
and ACC-OOD have the parameter of threshold τ . Then, we can draw the
accuracy-accuracy curve whose horizontal and vertical axes are ACC-OOD and
ACC-IND, changing the threshold parameter τ . Fig. 2b shows an example of the
accuracy-accuracy curve. Following the idea of area under the ROC curve, we
propose a metric of the AUAAC as the area under the accuracy-accuracy. The
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(a) ACC / ACC-OOD graph (b) ACC-IND / ACC-OOD graph

Fig. 2: Example of the accuracy-accuracy curve.

maximum value of the AUAAC is one. It is worth noting that employing ACC
instead of the proposed ACC-IND on the Y-axis, as depicted in Fig. 2a, restricts
the examination of IND task performance through threshold value changes.

Recall that ACC-IND is evaluated only with the IND dataset and that ACC-
OOD is evaluated only with the OOD dataset. Assuming the network model
infers posterior probabilities, when the thresholding parameter τ is 0, ACC-OOD
is zero because all data of the OOD dataset is wrongly classified as IND data.
In addition, ACC-OOD is one for τ = 1 because all data of the OOD dataset is
correctly classified as OOD data. When the thresholding parameter τ increases,
the ACC-OOD also increases. ACC-IND of τ = 0 is identical to the classical
ACC. In other words, ACC-IND at zero ACC-OOD equals the classical ACC. By
definition of Eq. 5, when the thresholding parameter τ increases, the ACC-IND
decreases. Then, the accuracy-accuracy curve is non-increase property.

Let’s consider the real-world application. In the real-world application, input
data includes the IND and the OOD data. Assuming we have a trained network
model, we need to determine the suitable threshold parameter τ , because here is
a trade-off relationship between ACC-IND and ACC-OOD as shown in Fig. 2b.

Recent deep neural networks often overfit the training data, which leads to
improved performance on the IND task during continued training. However, the
network model can become overconfident, resulting in high confidence estimates
even for OOD data and a decrease in OOD detection accuracy. Deciding when
to stop training becomes a complex multi-objective optimization problem when
considering both IND task performance and OOD detection accuracy. The
proposed AUAAC metric evaluates both performance metrics simultaneously and
can be used as a simple criterion for stopping network training.

3 Experiments

First, we evaluated the OOD detection performance of two network models,
ResNet-34 and DenseNet-VC-100, trained with three different IND datasets. We
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employed three evaluation metrics: TNR at TPR 95%, AUROC, and proposed
AUAAC, to evaluate the OOD detection performance. Subsequently, we examined
the behavior of ACC, ACC-IND, ACC-OOD, and proposed AUAAC of ResNet-34
during the training phase to gain insights into the characteristics of the proposed
AUAAC.

3.1 Experimental setup

We conducted comparative experiments under the following conditions to confirm
the behavior of the proposed AUAAC metric compared to other evaluation metrics
for OOD detection. For the IND datasets, we used the standard split of CIFAR-
100 [11], CIFAR-10 [11], and SVHN [17]. These datasets contain RGB images
with 32×32 pixels. For the OOD test dataset, we used iSUN [22], LSUN [24], and
TinyImageNet[12]. As same as in [14], we used two variants of TinyImageNet,
and LSUN sets: ‘(C)’ stands for using a 32× 32 image crop, and ‘(R)’ stands for
using resized images to 32× 32 pixels. We also used CIFAR-100, CIFAR-10, and
SVHN as OOD if a model was not trained with them. We employed ResNet-34 [4]
and DenseNet-BC-100 [7] to train the image classification models. The networks
were trained by categorical cross-entropy loss function using Adam [9] with a
0.001 learning rate in 400 epochs, and the batch size is 128.

Additionally, we investigated the behavior of ACC, ACC-IND, ACC-OOD,
and AUAAC of ResNet-34 during the training phase. In calculating ACC-IND
and ACC-OOD, a threshold was set so that 95% of IND data were correctly
determined as IND. For a dataset that represents known classes, we used the
standard split of CIFAR-10 [11]. For the OOD performance evaluation, we use
TinyImageNet[12] with 32×32 image crop. The network was trained by categorical
cross-entropy loss function using Adam [9] with a 0.001 learning rate in 1000
epochs. The batch size is 128.

3.2 Results

Table 1 presents the results of OOD detection using DenseNet-BC-100. TNR at
TPR 95% shows a similar tendency as AUROC since both metrics only evaluate
OOD detection accuracy. since AUAAC does not directly evaluate OOD detection
performance, it may exhibit less sensitivity toward OOD detection compared
to other metrics. This trend is evident in Tables 1 and 2, where the values of
AUAAC show a similar trend to AUROC but exhibit smaller changes compared
to TNR at TPR 95% and AUROC.

By incorporating AUAAC alongside other metrics, we can better understand
the network’s performance. For instance, AUROC helps determine the network’s
ability to effectively distinguish between IND and OOD data. On the other
hand, AUAAC allows us to assess not only OOD detection performance but
also the network’s performance in the IND task. While a high AUROC suggests
good OOD detection capability, it does not guarantee strong performance in
the IND task. Conversely, a high AUAAC indicates potential competence in
both the IND task and OOD detection. Table 3 presents the OOD detection
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Table 1: OOD detection performance of DenseNet-BC-100 in three metrics.
Results reported in percentage.

IND OOD
Metrics

TNR at TPR 95% AUROC AUAAC

CIFAR-100

iSUN 3.3 37.2 37.8
LSUN (C) 13.8 70.7 54.8
LSUN (R) 2.8 34.9 37.8
ImageNet (C) 6.9 50.6 44.4
ImageNet (R) 4.0 39.5 39.6
SVHN 11.2 70.0 54.1

CIFAR-10

iSUN 31.0 87.4 81.9
LSUN (C) 42.2 91.3 84.7
LSUN (R) 32.5 88.5 83.0
ImageNet (C) 30.1 87.7 82.2
ImageNet (R) 28.6 86.7 81.7
SVHN 46.2 92.8 85.0

SVHN

iSUN 60.4 93.7 89.2
LSUN (C) 55.4 91.3 86.1
LSUN (R) 57.5 92.9 88.5
ImageNet (C) 60.6 93.6 88.8
ImageNet (R) 61.7 93.6 89.3
CIFAR-10 53.6 91.6 86.1
CIFAR-100 52.8 91.4 86.1

results for ResNet34, which was trained on Cifar10 as an IND dataset but had a
Top-1 accuracy of 6.2% due to incorrect class labels. The results indicate that
even when trained with the wrong labels, the metrics TNR at TPR 95% and
AUROC, which only evaluate OOD detection performance, exhibit acceptable
values. However, it is meaningful that the AUAAC, which also assesses the
performance of the IND task, demonstrates significantly lower values. In other
words, the existing evaluation metrics cannot identify if the network does not
perform adequately in IND tasks for some reason. It highlights the advantage of
utilizing the proposed AUAAC metric, which can simultaneously assess the IND
task and OOD detection performance.

Figure 3 shows the change in ACC, ACC-IND, AUAAC, and ACC-OOD for
a thousand epochs of network training. Figure 3a shows that the classification
accuracy stably improves as the number of epochs increases. Figure 3b shows that
the ACC-OOD achieves a peak at 572 epochs and then gradually falls off. The
moving average graph more explicitly confirms the trend of accuracy decay. The
graphs of AUAAC in Figure 3a and the accuracy of OOD detection in Figure 3b
show similar tendencies in peaks and valleys. This is because the ACC-OOD is
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Table 2: OOD detection performance of ResNet-34 in three metrics. Results
reported in percentage.

IND OOD
Metrics

TNR at TPR 95% AUROC AUAAC

CIFAR-100

iSUN 14.0 75.4 58.6
LSUN (C) 15.5 75.6 58.5
LSUN (R) 15.7 77.6 59.9
ImageNet (C) 17.4 78.5 60.3
ImageNet (R) 14.3 76.4 59.2
SVHN 12.2 72.9 57.2

CIFAR-10

iSUN 39.2 89.4 84.9
LSUN (C) 46.7 91.9 86.9
LSUN (R) 40.2 89.7 85.1
ImageNet (C) 39.5 88.2 83.8
ImageNet (R) 34.4 86.5 82.4
SVHN 38.8 91.4 86.3

SVHN

iSUN 67.8 94.2 90.4
LSUN (C) 67.4 94.1 90.2
LSUN (R) 67.0 93.9 90.1
ImageNet (C) 70.4 94.9 91.0
ImageNet (R) 70.0 94.6 90.7
CIFAR-10 62.2 92.6 88.9
CIFAR-100 61.5 92.3 88.6

also taken into account when calculating AUAAC. However, we can see that the
range of variation in AUAAC is smaller than that of OOD detection accuracy.

Table 4 summarizes four metrics of ACC, ACC-IND, ACC-OOD, and AUAAC
at several epochs. For example, early stopping is an important technique to avoid
overfitting. But, it is not an easy task to determine when we should stop the
training. If we want to maximize the classical ACC, Table 1 shows that we need
to continue the training until 990 epochs. On the other hand, if we focus on
ACC-OOD, which represents the OOD detection accuracy, it might be good
to stop at 572 epochs. However, ACC-OOD does not reflect any information
about ACC and/or ACC-IND. So, there is no guarantee that the network model
has sufficient good accuracy in terms of the IND classification accuracy. The
proposed AUAAC can evaluate both the IND classification accuracy and the
OOD detection performance. Therefore, we can use AUAAC for the stopping
criteria. If we train the network to maximize the AUAAC, the network model is
expected to have reasonably good IND classification accuracy and OOD detection
accuracy.

We also show the Accuracy-Accuracy Curves (AACs) and the proposed metric
of AUAAC at several epochs in Figure 4. As shown in Figure 4, the AAC varies as
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Table 3: OOD detection performance of ResNet-34 trained with wrong label
(Top-1 accuracy of 6.2%) in three metrics. Results reported in percentage.

IND OOD
Metrics

TNR at TPR 95% AUROC AUAAC

CIFAR-10

iSUN 51.2 92.5 4.3
LSUN (C) 46.9 92.4 4.2
LSUN (R) 53.7 93.5 4.4
ImageNet (C) 47.7 92.3 4.1
ImageNet (R) 48.5 92.4 4.2
SVHN 40.9 90.7 3.8

Table 4: ACC, ACC-IND, ACC-OOD, and AUAAC of different training epochs.

Epoch ACC ACC-IND ACC-OOD AUAAC

572 0.935 0.910 0.520 0.879
612 0.939 0.914 0.486 0.882
796 0.943 0.918 0.450 0.872
884 0.944 0.915 0.418 0.851

the training progresses and the area changes. Therefore, it is also possible to check
at what epoch and at what threshold the desired IND classification accuracy
and OOD detection accuracy are achieved. For instance, when comparing the
AACs at 700 epochs and 1000 epochs, the AUAAC of the 700 epoch is larger,
suggesting superior performance. Nevertheless, if an OOD detection rate of 0.8
is sufficient, then training for 1000 epochs is the preferred choice since it yields
greater accuracy for IND classification at the OOD detection rate of 0.8. On the
other hand, if a desired OOD detection rate of 95% is targeted, training for 700
epochs would be more suitable. Thus, the proposed method can facilitate the
selection of networks and thresholds based on more intricate decision criteria.

4 Conclusions

We have proposed a new metric named the area under the accuracy-accuracy curve
(AUAAC) to simultaneously evaluate IND task and OOD detection accuracy.
Initially, we evaluated the IND classification accuracy of the IND task and OOD
detection performance changing the threshold. Subsequently, we constructed an
accuracy-accuracy curve (AAC), plotting the OOD detection accuracy (ACC-
OOD) on the X-axis and the IND task accuracy (ACC-IND) on the Y-axis.
Finally, we have determined that the proposed AUAAC is good criteria for early
stopping. When both IND task performance and OOD detection accuracy are
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considered, determining the optimal point to stop training becomes a complex
multi-objective optimization problem. In this context, the proposed AUAAC
metric, which evaluates both performance metrics simultaneously, serves as a
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straightforward criterion to determine the optimal stopping point for network
training. Furthermore, the AAC can provide guidance for selecting a threshold
to distinguish between IND and OOD data. By choosing the desired accuracy of
IND task or OOD detection, we can readily confirm the accuracy of the other
metric.
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