

- A **demosaicking** process plays a crucial role to acquire a high-quality color image.
- Researches on the demosaicking algorithm for the Bayer CFA have a long history.

Demosaicking process.

• A color difference interpolation technique is widely used.

We propose **residual interpolation** instead of color difference interpolation.

Main idea

Observation of the color difference

- The color difference image is likely to be flat since all color bands have very similar image structures.
 - \rightarrow This makes the interpolation process easy.

Motivation

• A flatter image than the color difference image makes the interpolation easy.

 \rightarrow We generate a **residual image**, which is flatter than the standard color difference image.

R band image

R band gradient image

`_____

RESIDUAL INTERPOLATION FOR COLOR IMAGE DEMOSAICKING

Daisuke Kiku, Yusuke Monno, Masayuki Tanaka, and Masatoshi Okutomi

Tokyo Institute of Technology

2013 IEEE International Conference on Image Processing

* Normalized for visual comparison.

The outline of our proposed algorithm.

(1) Green interpolation

- We incorporate the residual interpolation into the GBTF [1] algorithm.
- The GBTF algorithm uses the Hamilton and Adam's interpolation, which is a color difference interpolation.
- \rightarrow We replace the color difference interpolation with the residual interpolation.

② Guided upsampling

- We generate the tentative estimate by using the guided filter [2].
- For each local window, the tentative estimate is represented by a linear transform of the interpolated G image [3].

③ Residual interpolation

We interpolate the residuals by bilinear interpolation.

_
R

[2] K. He, J. Sun, and X. Tang, "Guided image filtering," ECCV, 2010. [4] X. Li, B. Gunturk, and L. Zhang, "Image demosaicing: a systematic survey," Proc. of SPIE, 2008.

Source code is available! http://www.ok.ctrl.titech.ac.jp/res/DM/RI.html

- (a_i, b_i) are the linear coefficients, a_i is a gain component, b_i is a DC component.
 - Generation of the tentative estimate \check{R} by the guided filter.

leferences

- [1] I. Pekkucuksen and Y. Altunbasak, "Gradient based threshold free color filter array interpolation," *ICIP*, 2010.
- [3] Y. Monno, M. Tanaka, and M. Okutomi, "Multispectral demosaicking using guided filter," Proc. of SPIE, 2012.

				Ex	xperin		
 Algorithms : AHD, DLMMSE, LPA, L 							
 Datasets : IMAX 18 images, Koda 							
PSNR and C							
	IMAX 18 images						
Algorit	nms	R	PSNR [dB] G	В	CPSNR [dB]		
AHD)	33.00	36.98	32.16	33.49		
DLMN	ISE	34.03	37.99	33.04	34.47		
LPA	<u>.</u>	34.36	37.88	33.30	34.72		
		36.28	39.76	34.39	36.20		
Propos	r sed	35.48	40 01	32.71	33.89		
			Zodolz 2		30.45		
		AA+r	PSNR [dB]	omage			
Algorith	ims	R	G	В	CPSNR [dB]		
AHD)	35.32	38.52	34.66	35.78		
DLMN	ISE	36.89	40.37	36.02	37.33		
	AT.	37.28	40.51	36.38	37.68		
		37.09	40.05	35.81	37.23		
Propos		30.77	<u> </u>	36.79	37.22		
Visual							
Image: constraint of the second of the sec				Origi	nal		
LPA	: 32.3	3dB	LD	PI-NAT :	33.22dI		
Iiohtho		of Ko	dak	Origi	nal		
Lighthouse of Kodak Original							

LPA: 42.97dB

nental results

LDI-NAT, GBTF, Proposed ak 12 images [4]

PSNR comparison

Kodak 12 images

Algorithms				
	R	G	В	
AHD	38.81	40.84	38.42	39.22
DLMMSE	41.17	43.94	40.51	41.62
LPA	41.66	44.46	41.00	42.12
LDI-NAT	38.30	40.49	37.94	38.77
GBTF	41.71	44.85	41.01	42.21
Proposed	39.74	42.21	38.90	40.05

Running time per one image

Algorithms	Running time [s]			
Algorithms	500*500 (IMAX)	768*512 (Kodak)		
AHD	30.10	45.60		
DLMMSE	23.94	37.73		
LPA	1.51	3.46		
LDI-NAT	1387.66	2172.51		
GBTF	0.11	0.17		
Proposed	1.22	2.01		

comparison

LDI-NAT : 35.38dB

AHD: 31.28dB

GBTF : 32.09dB

AHD : 41.12dB

GBTF : 42.81dB

DLMMSE : 32.19dB

Proposed : 33.26dB

DLMMSE: 42.14dB

Proposed : 41.57dB