Deep Snapshot HDR Imaging Using Multi-Exposure Color Filter Array

<u>Takeru Suda</u>, Masayuki Tanaka, Yusuke Monno, and Masatoshi Okutomi Tokyo Institute of Technology

ACCV2020

Our Topic: Snapshot HDR Imaging

Multi-exposure CFA RAW data (ME-CFA RAW data)

Reconstructed HDR image

Multi-LDR-images-based methods

- + Rich spatial and exposure information
- Ghost artifacts for dynamic scenes

Multi LDR images

Single-LDR-image-based methods

- + One-shot HDR image generation
- Inpainting artifacts for saturated or blacked-out areas

Single LDR image

- + One-shot acquisition of multi-exposures information
- Demosaicking is required to interpolate missing color information

HDR image

ME-CFA RAW data

<i>R</i> ₁	G_1	R ₂	G
G ₁	<i>B</i> ₁	<i>G</i> ₂	B
R ₂	G_2	R ₃	G
<i>G</i> ₂	<i>B</i> ₂	G ₃	B

Multi-LDR-images-based methods

- + Rich spatial and exposure information
- Ghost artifacts for dynamic scenes

Multi LDR images

Single-LDR-image-based methods

- + One-shot HDR image generation
- Inpainting artifacts for saturated or blacked-out areas

Single LDR image

- + One-shot acquisition of multi-exposures information
- Demosaicking is required to interpolate missing color information

HDR image

Multi-LDR-images-based methods

- + Rich spatial and exposure information
- Ghost artifacts for dynamic scenes

Multi LDR images

Single-LDR-image-based methods

- + One-shot HDR image generation
- Inpainting artifacts for saturated or blacked-out areas

Single LDR image

- + One-shot acquisition of multi-exposures information
- Demosaicking is required to interpolate missing color information

HDR image

Multi-LDR-images-based methods

- + Rich spatial and exposure information
- Ghost artifacts for dynamic scenes

Multi LDR images

Single-LDR-image-based methods

- + One-shot HDR image generation
- Inpainting artifacts for saturated or

blacked-out areas

Single LDR image

Snapshot methods

- + One-shot acquisition of multi-exposures information
- Demosaicking is required to interpolate missing color information

ME-CFA RAW data

Multi-LDR-images-based methods

- + Rich spatial and exposure information
- Ghost artifacts for dynamic scenes

Multi LDR images

- + One-shot HDR image generation
- Inpainting artifacts for saturated or

blacked-out areas

Single LDR image

ExpandNet [5]

Snapshot methods

- + One-shot acquisition of multi-exposures information
- Demosaicking is required to interpolate missing color information

ME-CFA RAW data

Our Main Contributions

- We propose a novel deep learning framework that effectively solves the joint demosaicking and HDR reconstruction problem.
- We propose the idea of luminance normalization that enables an effective consideration of relative local image contrasts.

Proposed Method

Our Proposed Method Overview

- Our method mainly consists of two parts:
 - 1. Luminance estimation
 - 2. Luminance-normalized HDR image estimation

Luminance estimation

Luminance-normalized HDR image estimation

• Step 1: Training LDR interpolation network (LDR-I-Net) for luminance estimation

Our considered ME-CFA pattern

Network Architecture

• Step 2: Training luminance-normalized network (LN-Net) for HDR image estimation

Luminance-normalized HDR image estimation

Inference Step

• HDR image is reconstructed through the trained two networks

Experimental Results

Datasets

- Funt's dataset [52]
 - 224 static scenes
 - 211 images for training
 - 13 images for testing
- Kalantari's dataset [2]
 - 89 dynamic scenes
 - 74 images for training
 - 15 images for testing

Example ground-truth HDR images (Funt's dataset)

Ground-truth HDR image

Example LDR inputs and ground-truth HDR images (Kalantari's dataset)

LDR inputs

Ablation Study

	CPSNR	G-CPSNR	L-CPSNR	HDR-VDP-2	LN-MSE
Ours (full version)	48.57	41.94	40.38	80.57	0.0585
without luminance normalization	46.70	30.24	29.29	77.97	0.1289
without O/U-pixel correction	42.30	36.60	34.45	78.51	0.0913
without gradient term in the loss	41.76	36.14	35.76	65.41	0.4364
without RAW data adaptation	46.19	39.45	37.77	78.16	0.0688

• Evaluation metrics

- CPSNR: CPSNR in the liner HDR domain
- G-CPSNR: CPSNR in the global tone-mapped domain using Kalantari et al. tone-mapping [2]
- L-CPSNR: CPSNR in the local tone-mapped domain using MATLAB local tone-mapping function
- HDR-VDP-2: Common evaluation metric for HDR images (Mantiuk et al. [54])
- LN-MSE: Mean squared error in the luminance normalized domain

Comparison with Other Snapshot Methods (Funt's Dataset)

Framework	Demosaicking/SR	CPSNR	G-CPSNR	L-CPSNR	HDR-VDP-2	LN-MSE
Demosaicking-based framework:	ARI [55]	46.14	38.15	36.69	75.68	0.0712
Irradiance CFA RAW data generation	Kokkinos [48]	41.06	26.27	26.65	69.32	0.1840
\rightarrow Demosaicking	CDMNet [47]	46.32	38.37	37.12	58.00	0.0713
IDD internalation based from evenly	ESRGAN [56]	30.66	25.21	21.87	53.55	0.2720
LDR-interpolation-based framework: LDR interpolation by SR \rightarrow HDR reconstruction	WDSR [57]	35.75	30.97	29.32	60.16	0.3796
	EDSR [58]	39.19	32.57	29.95	66.04	0.1190
	LDR-I-Net	43.38	35.64	34.54	76.30	0.1030
Our deep snapshot HDR imaging framework		48.57	41.94	40.38	80.57	0.0585

Comparison with Other Snapshot Methods

Ground-truth HDR image

Demosaicking-based methods

LDR-interpolation-based methods

Comparison with **Other Snapshot Methods**

Ground-truth HDR image

Kokkinos [48]

Ours

Ground Truth

Demosaicking-based methods

methods

EDSR [58]

WDSR [57]

CDMNet [47]

Comparison with State-of-the-Art Methods (Kalantari's Dataset)

Input sources	Methods	CPSNR	G-CPSNR	L-CPSNR	HDR-VDP-2	LN-MSE
Multiple LDR images	Sen [17]	38.05	40.76	36.13	61.08	0.0389
	Kalantari [2]	41.15	42.65	38.22	64.57	0.0306
	Wu [3]	40.88	42.53	37.98	65.60	0.0338
Single LDR image (Second exposure)	HDRCNN [6]	12.92	14.13	34.80	54.48	4.1082
	DrTMO [31]	18.23	14.07	25.32	56.78	8.7912
	ExpandNet [5]	22.09	22.37	28.03	57.34	1.2923
ME-CFA RAW data	Ours	41.43	38.60	35.23	66.59	0.0832

Comparison with State-of-the-Art Methods

Multi-LDR-images-based methods

Wu [3]

Ours

HDRCNN [6]

DrTMO [31]

Single-LDR-image-based methods

ExpandNet [5]

Comparison with State-of-the-Art Methods

Sen [17]

Multi-LDR-images-based methods

Wu [3]

Ours

HDRCNN [6]

DrTMO [31]

Single-LDR-image-based methods

ExpandNet [5]

Comparison with State-of-the-Art Methods

Multi-LDR-images-based methods

Wu [3]

Ours

HDRCNN [6]

Single-LDR-image-based methods

ExpandNet [5]

Comparison of Error Maps

HDRCNN [6]

DrTMO [31]

ExpandNet [5]

Wu [3]

Ours

Conclusions

• We have proposed a novel deep learning-based framework that can effectively address the joint demosaicking and HDR reconstruction problem for snapshot HDR imaging using an ME-CFA.

• We have introduced the idea of luminance normalization that effectively considers relative local image contrasts.

• We have demonstrated that our framework can produce HDR images with much fewer visual artifacts compared with other snapshot methods and also state-of-the-art HDR imaging methods.