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Abstract—In this paper, we propose a simple and effective
depth upsampling technique using self-guided residual inter-
polation. The original residual interpolation requires guidance
information such as high-resolution RGB color image. However,
self-guided residual interpolation requires only a single depth
map. In the proposed algorithm, a tentative estimation of a
high-resolution depth map is first generated from an input
low-resolution depth map. Then, re-interpolation is applied to
the residual domain, which is defined by differences between
the input depth map and the tentative estimate. A precise
high-resolution depth map is obtainable by interpolating in
the residual domain. Experimental results demonstrate that our
algorithm can outperform state-of-the-art depth map upsampling
algorithms.

I. INTRODUCTION

Accurate depth map estimation is widely used in many
computer vision applications including object detection [1],
human pose analysis [2], and semantic scene recognition [3].
Many depth acquisition systems have been developed [4]. A
common issue among those systems is the limited resolution
of the acquired depth map. Therefore, depth map upsampling
serves a crucially important role in various applications.

Depth map upsampling is classified into three categories:
multiple depth frame upsampling [5], [6], depth map up-
sampling with high-resolution intensity image [7]–[13] and
single depth map upsampling [14]–[16]. Multiple depth frame
upsampling requires multiple sensors or time sequences to
obtain multiple depth frames. Moreover, accurate alignment
of depth frames is necessary. However, depth map alignment
is an extremely challenging problem because the alignment
requires precise camera motion estimation. Recently, many
algorithms of the depth map upsampling with the high-
resolution intensity image have been proposed [7]–[13]. Those
algorithms enhance the resolution of the depth map, assuming
that strong correlation exists between the depth map and the
intensity image. However, this assumption is not always true.
Severe artifacts appear in regions where the assumptions fail.
Furthermore, depth map upsampling with the high-resolution
intensity image requires an additional sensor to obtain the
high-resolution intensity image. Alignment between the depth
map and the high-resolution intensity image is an very chal-
lenging problem.

Single depth map upsampling is widely demanded because
it requires no alignment, additional sensors, or hardware.
However, single depth map upsampling is a highly ill-posed

problem. In this paper, we propose a novel single depth
map upsampling algorithm based on a residual interpolation.
The residual interpolation is originally proposed as a part of
color image demosaicking [17]–[19]. The fundamental idea of
residual interpolation is to perform interpolation in a residual
domain, where the residual is defined as a difference between
a tentatively estimated high-resolution depth map and an input
low-resolution depth map. Although the original residual inter-
polation requires additional information for tentative estima-
tion of the high-resolution depth map, the proposed algorithm
generates a tentative estimate from the input low-resolution
depth map. We designate this interpolation as self-guided
residual interpolation. To improve the upsampling accuracy,
we apply a gradual refinement approach by following Glasner
et al. [20]. They iteratively applies the super-resolution for
natural images with small steps to obtain the desired reso-
lution. We show experimentally that this gradual refinement
approach is effective for depth map upsampling. Experimental
results demonstrate that the proposed depth map upsampling
algorithm outperforms existing upsampling algorithms.

II. RELATED WORKS

Depth upsampling is an actively studied in computer vi-
sion and image processing. Here, we briefly describe two
approaches of depth map upsampling. First is an intensity
guided approach, which uses a high-resolution intensity image
as a depth clue. Second is single depth map upsampling, which
can upsample from a single depth map only.

Intensity-guided approach. This is the most common strategy
of depth map upsampling. Kopf et al. [7] proposed joint
bilateral upsampling known as one of the seminal works
of filtering-based depth upsampling algorithm. It applies the
joint bilateral filter [22] to an input depth map with a high-
resolution intensity guide. Yang et al. [8] applied joint bilateral
upsampling on a cost volume constructed from an input low-
resolution depth map. Many guide-based-filtering upsampling
algorithms have been proposed, e.g., guided image filter-
ing [9] and joint geodesic filter [10]. Guide-based-optimization
upsampling algorithms have also been proposed [11]–[13].
Diebel and Thrun [11] proposed an MRF framework by
which the smoothness term is penalized according to edges
on a high-resolution intensity guide. Park et al. [12] involved
a non-local means regularization term that preserves thin
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Fig. 1. Depth distributions of input and residual on ”Art” from Middlebury 2005 dataset [21]. Graphs of the right column are 1D sectional views in the
dashed line on the left images. The tentative high-resolution depth map in (b) is upsampled by guided upsampling [9] under intensity guidance. Gradient maps
in (f), (g) express the absolute magnitude of the gradient at each pixels. Radical fluctuation of the depth value is occurred everywhere in the input depth map
(a) – (c). However, it is observed that the fluctuation is extremely suppressed in the residual (d), (e). The same could be read from the gradient maps (f) – (h).

structures. Ferstl [13] et al. formulated depth upsampling as a
convex optimization problem expressed with total generalized
variation. In guide-based-optimization upsampling algorithms,
parameters of an energy function to be optimized are tuned
based on a high-resolution intensity guide.

The intensity guided approach requires the aligned high-
resolution intensity guide. However, in many practical cases,
it is not easy to obtain such an aligned high-resolution intensity
guide.

Single depth map upsampling. A depth map upsampling
with a single low-resolution depth map is highly demanded.
Yang et al. [14] proposed dictionary-based upsampling. A dic-
tionary pair is learned with low-resolution and high-resolution
training patch pairs. Single depth map upsampling is per-
formed with the learned dictionary pair.

Aodha et al. [15] seeks appropriate candidates of high-
resolution depth patches from their database for each local
low-resolution depth patch and assembles them in the form
of an MRF labeling task. Hornáček et al. [16] proposed a
similar method that seeks high-resolution and low-resolution
depth patch pairs from an input image itself.

Single depth map upsampling requires no aligned high-
resolution intensity guide. It is much more beneficial than

an intensity-guided approach in the practical situation. In
this paper, we also propose a single depth map upsampling
algorithm.

III. PROPOSED METHOD

In general, the interpolation accuracy depends heavily on
the input image smoothness. This is a common property for
any kind of interpolation algorithms. In other words, the
low gradient energy of the input image makes interpolation
easy. That observation implies that one can improve the
interpolation performance further if the input image could
be transformed into the domain with the lower gradient
energy. Residual interpolation has been proposed based on this
idea [17]–[19]. Residual interpolation performs upsampling
in the residual domain, where the residual is defined as the
difference between the tentatively estimated high-resolution
image and the input low-resolution image intensity. Residual
interpolation also adds the residual to the tentative estimate to
enhance the upsampling result. The gradient energy of residual
is suppressed to an extreme degree for any input image, as
shown in Fig. 1. Consequently, better performance can be
expected even using a naı̈ve interpolation algorithm such as
bicubic interpolation in the residual domain. That is also true
for the depth map upsampling.
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Fig. 3. Processing pipeline of our proposed self-guided residual interpolation.

The original residual interpolation requires a high-resolution
intensity guide. Depth map upsampling based on the residual
interpolation shown in Fig. 2 has been proposed in [23]. How-
ever, that algorithm also requires a high-resolution intensity
guide.

Herein, we propose single depth map upsampling based
on residual interpolation, which requires no high-resolution
intensity guide. Residual interpolation is designed to reduce
the gradient energy of the residual. The residual is defined by
the difference between the input and the tentative estimate.
The main idea of the proposed algorithm is to generate such
a tentative estimate from the input depth map itself. We
designate this tentative estimate as the self-guided tentative
estimate. Residual interpolation with the self-guided tentative
estimate is designated as self-guided residual interpolation.

Fig. 3 shows the processing pipeline of the proposed self-
guided residual interpolation. In the proposed algorithm, the
input low-resolution depth map is upsampled by the displace-
ment field algorithm [24]. Subsequently, we apply guided
upsampling (GU) [9] to obtain the tentative estimate, where the
depth map upsampled by the displacement field algorithm is
used as the guide for the GU. The residual map is calculated by
subtracting the tentative estimate from the input low-resolution
depth map. Then, the bicubic interpolation is performed in
the residual domain. The output high-resolution depth map is
estimated by adding the tentative estimate to the interpolated
residual. As discussed later, the self-guided tentative estimate
generated from the input low-resolution depth map can reduce
the gradient energy of the residual.

A. Self-Guided Tentative Estimate

We verify the effectiveness of the self-guided tentative
estimate experimentally. Hereinafter, we refer N× upsampling
to upsampling with N × N scale factor. We conducted 4×

upsampling using the Middlebury dataset [21]. We calculated
the gradient energy of the residual and the RMSE of the up-
sampled depth map, changing the tentative estimate generation
algorithms. We compared four tentative estimate generation
algorithms: the GU [9] with high-resolution intensity, bicu-
bic, Wang’s algorithm [24], and the combination of Wang’s
algorithm [24] and the GU [9] in Fig. 3. High-resolution
intensity GU [9] requires guide information. The other three
algorithms can generate tentative estimates only from the input
low-resolution depth map.

Table I shows numerical comparisons of the gradient energy
of the residual and the RMSE between the output depth map
and the ground truth. Those values are averages of six scenes
in the Middlebury dataset [21]. These comparisons demon-
strate that the gradient energy of the residual with the tentative
generated by the combination of Wang’s algorithm [24] and
the GU [9] is the lowest. We use this combination for the
tentative estimation in the proposed method algorithm as
shown in Fig. 3.

B. Gradual Upsampling

The upsampling operation becomes more accurate as the
upsampling factor is decreased because the space of possible
high-resolution solutions for each local low-resolution depth
patch, and thus the amount of ambiguity, decreases. Glasner et
al. [20] proposed upsampling by a gradual refinement in the
small upsampling factor. Following their work, the proposed
framework performs multiple operations of 2× upsampling
shown in Fig. 3.

Accuracy comparison among three upsampling steps at the
same factor is conducted. We refer to the iterative four times
2× upsampling as quadruple 2× upsampling. The other up-
sampling steps are designated similarly. We compared quadru-
ple 2×, double 4×, and single 16× upsampling. We evaluated
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Fig. 4. Visual comparison of 8× upsampling on a part of Art from the Middlebury dataset: (a) intensity guidance image, (b) input low-resolution depth map
(enlarged by nearest neighbor upsampling), (c) guided image filtering [9], (d) non-local means upsampling [12], (e) anisotropic total generalized variation [13],
(f) intensity-guided residual interpolation, (g) displacement field [24], (h) sparse coding [14], (i) dictionary-based method [15], (j) proposed, and (k) ground-
truth.

TABLE I. RELATION BETWEEN GRADIENT ENERGY OF THE RESIDUAL
AND OUTPUT ACCURACY (4× UPSAMPLING).

Tentative estimate
generation algorithm

Intensity-guided Self-guided

GU [9] Bicubic Wang [24] Wang [24]+GU [9]

Gradient energy [×10-3] 1.66 1.49 1.63 1.44
RMSE of output [ mm ] 14.3 14.2 14.6 13.9

TABLE II. COMPARISON OF UPSAMPLING STEPS (16× UPSAMPLING).

Upsampling algorithm Wang [24] Self-guided residual interpolation

quadruple 2× 32.01 26.89
double 4× 40.72 29.44
single 16× 42.98 31.33

two upsampling algorithms, displacement field upsampling
by Wang [24] and the proposed framework. Table II shows
average RMSE of 16× upsampling results on the Middlebury
dataset [21]. This numerical comparison supports that the
gradual upsampling approach is also effective for depth map
upsampling.

IV. EXPERIMENTAL RESULTS

We demonstrate quantitative and qualitative evaluations of
the proposed depth upsampling algorithm1. We first exam-
ined the numerical performance compared to state-of-the-art
algorithms with the Middlebury 2005 dataset [21]. Next, we
provide a visual comparison using actual sensor data acquired
using a time-of-flight (ToF) sensor. We performed hole-filling
to obtain the ground-truth depth map in all our experiments
because a depth map generally has the lack of depth values
due to occlusions and various internal errors of the acquisition
system. This preprocessing is achieved simply by propagating

1The code is available on http://www.ok.ctrl.titech.ac.jp/res/DSR/SGRI/

the hole contour toward the inner side using the median value
of neighboring pixels. The hole-filled depth map is treated as
the ground-truth.

A. Middlebury dataset

Quantitative and qualitative evaluations of the pro-
posed method were conducted using the Middlebury 2005
dataset [21] for Art, Books, Dolls, Laundry, Moebius, and
Reindeer. Considering that the proposed algorithm is applied
to the ToF sensor, we use depth maps converted from the
disparity form as ground-truth. Original RGB intensity images
were used as the guide image for intensity-guided algorithms.
We evaluated the low-resolution depth maps with three down-
sampling factors (2×, 4×, 8×) generated by downsampling
after applying a Gaussian filter.

Visual comparison of the 8× upsampling evaluation is
shown in Fig. 4. In Fig. 4, (c) He [9], (d) Park [12], (e)
Ferstl [13], and (f) Konno [23] are intensity guided approach.
Single depth map upsampling algorithms are (g) Wang [24],
(h) Yang [14], (i) Aodha [15], and (j) proposed. Among results
of the intensity guide approach, one can find edge-bleeding ar-
tifacts which texture transfer from the high-resolution intensity
guide causes, especially in regions of stain and bar codes on
paint brushes. In contrast, no texture transfer artifact exists
in the results of the single depth map upsampling algorithm.
The result of the proposed algorithm appears to be the most
natural among the results of the single depth map upsampling
algorithm.

Table III shows numerical results of these experiments in
terms of the root mean square error (RMSE) and edge-RMSE
(E-RMSE) [25], structural similarity (SSIM) [26]. To measure
E-RMSE, we first detect edges using the Canny edge detector
from the ground truth depth map. Then we extract the edge
region by dilating the edge map. The standard deviation of
isotropic Gaussian function used in SSIM is set to 4 so that



TABLE III. QUANTITATIVE COMPARISON ON THE MIDDLEBURY DATASET 2005 [21]

Art Dolls Laundry Moebius Average of six scenes

RMSE [mm] 2× 4× 8× 2× 4× 8× 2× 4× 8× 2× 4× 8× 2× 4× 8×
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He [9] 21.80 28.35 39.27 7.12 8.84 11.60 15.91 21.21 28.53 8.51 11.24 16.15 13.34 17.41 23.89
Park [12] 20.93 27.80 34.84 7.78 8.88 10.78 14.96 20.16 24.54 8.01 9.92 12.45 12.92 16.69 20.65
Ferstl [13] 19.57 26.76 52.31 6.95 9.05 36.63 16.51 23.84 56.95 7.61 10.23 38.85 12.66 17.47 46.18
Konno [23] 18.26 23.31 31.17 6.64 8.14 10.30 13.41 16.71 22.60 7.45 9.48 13.09 11.44 14.41 19.29

Si
ng
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de
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h

m
ap

up
sa

m
pl

in
g Wang [24] 14.08 25.39 47.07 6.43 8.69 15.16 10.96 18.81 32.56 6.33 10.04 19.01 9.45 15.73 28.45

Yang [14] 14.74 27.48 46.21 5.73 10.16 16.42 10.63 20.38 33.87 5.81 11.42 19.76 9.23 17.36 29.06
Aodha [15] 20.04 33.61 57.44 12.15 13.59 21.23 20.78 26.59 42.75 17.21 14.86 25.16 17.55 22.16 36.65
proposed 15.69 19.59 30.01 6.39 8.03 10.86 11.62 14.88 21.31 6.73 8.53 12.09 10.11 12.76 18.57

E-RMSE [mm] 2× 4× 8× 2× 4× 8× 2× 4× 8× 2× 4× 8× 2× 4× 8×
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He [9] 21.98 28.60 39.60 7.16 8.90 11.65 15.14 20.37 27.41 8.54 11.27 16.01 13.21 17.29 23.67
Park [12] 21.10 28.04 35.15 7.82 8.94 10.83 14.60 19.77 24.16 8.06 9.94 12.45 12.89 16.67 20.65
Ferstl [13] 19.72 27.00 52.69 7.00 9.05 36.50 16.04 23.34 56.69 7.65 10.24 38.65 12.60 17.41 46.13
Konno [23] 18.41 23.51 31.41 6.68 8.18 10.35 12.74 15.83 21.05 7.49 9.51 13.08 11.33 14.26 18.97
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in
g Wang [24] 14.18 25.58 47.47 6.48 8.73 15.21 10.15 18.10 31.56 6.35 10.04 19.04 9.29 15.61 28.32

Yang [14] 14.83 27.61 46.55 5.20 9.90 16.37 9.97 19.27 32.64 5.74 11.23 19.73 8.93 17.00 28.82
Aodha [15] 19.77 33.78 57.83 12.24 13.66 21.22 20.60 25.59 41.31 17.23 14.85 25.07 17.46 21.97 36.36
proposed 15.80 19.73 30.25 6.43 8.09 10.92 10.88 13.92 20.42 6.75 8.54 12.10 9.97 12.57 18.42

SSIM 2× 4× 8× 2× 4× 8× 2× 4× 8× 2× 4× 8× 2× 4× 8×
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He [9] 0.79 0.66 0.49 0.86 0.76 0.61 0.79 0.65 0.48 0.79 0.65 0.46 0.81 0.68 0.51
Park [12] 0.64 0.55 0.45 0.60 0.61 0.51 0.65 0.55 0.47 0.67 0.58 0.49 0.64 0.57 0.48
Ferstl [13] 0.79 0.60 0.21 0.86 0.71 0.17 0.73 0.49 0.12 0.79 0.56 0.15 0.79 0.59 0.16
Konno [23] 0.86 0.76 0.58 0.90 0.83 0.68 0.86 0.75 0.56 0.86 0.75 0.56 0.87 0.77 0.60

Si
ng
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m
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up
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m
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in
g Wang [24] 0.88 0.77 0.55 0.90 0.82 0.63 0.87 0.76 0.53 0.87 0.76 0.54 0.88 0.78 0.56

Yang [14] 0.85 0.67 0.43 0.89 0.76 0.54 0.85 0.67 0.41 0.86 0.67 0.41 0.86 0.69 0.45
Aodha [15] 0.61 0.48 0.33 0.62 0.48 0.34 0.45 0.32 0.19 0.48 0.37 0.24 0.54 0.41 0.27
proposed 0.88 0.79 0.63 0.91 0.84 0.70 0.88 0.78 0.59 0.87 0.78 0.61 0.88 0.80 0.63

this measurement can evaluate the similarity of semi-global
structure. In Table III, the methods listed above the dashed line
are intensity-guided methods. Due to the limit of the space,
comparisons of four scenes and average are summarized. We
put the average of these numerical results over six scenes in
the right end column. The best result for each dataset and
upsampling factor are emphasized in bold typeface.

The lower RMSE and E-RMSE show better results. Com-
paring the average performances of the RMSE and the E-
RMSE in 4× and 8× upsampling, the proposed algorithm
outperforms state-of-the-art algorithms including the inten-
sity guided approach. Those comparisons demonstrate that
the proposed algorithm is extremely effective for the higher
upsampling factor cases. The higher SSIM value signifies a
better result. In terms of the SSIM, the proposed algorithm
invariably shows the best performance for all scenes.

B. Visual comparison on real sensor data

Visual comparison on real sensor data can be conducted
using a depth map acquired with a ToF sensor. For depth ac-
quisition, we use Kinect v2 that provides registered 512×424
dense depth and IR intensity maps. We use the depth map
for ground-truth and produce an input low-resolution depth
map by downsampling the ground-truth. The 4× upsampling
results are shown in Fig. 5. The associated intensity map and

the experimental setup are shown in Fig. 6. This comparison
demonstrates that the proposed algorithm can upsample the
depth map of real scene effectively, although Aodha’s [15]
and Yang’s [14] algorithms yield severe artifacts.

V. CONCLUSION

We have proposed a simple and effective single depth map
upsampling algorithm based on self-guided residual interpola-
tion. The key to the proposed algorithm is interpolation of the
residual domain, where the residual is defined as the difference
between the tentative estimate and the input low-resolution
depth map. In the proposed algorithm, the tentative estimate
is also generated, but from the input low-resolution depth
map only. Therefore, the proposed algorithm can upsample
using the single low-resolution depth map. Experimentally
obtained results demonstrate that the proposed algorithm out-
performs state-of-the-art algorithms, even including intensity-
guided methods in terms of both quantitative and qualitative
evaluations.
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