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Abstract—Image-based depth estimation is one of the impor-
tant tasks in computer vision. Depth-from-defocus (DfD) methods
estimate the scene depth from a single or multiple defocused
images by exploiting depth-dependent defocus blur cues. Because
of the difficulty in obtaining a real-world dataset with ground-
truth scene depth, most deep-learning-based DfD methods rely on
a synthetic training dataset, where more realistic scene rendering
is considered desirable for more accurate depth estimation. In
this paper, we consider if realistic 3D objects are really necessary
for training DfD networks. To investigate this, we design a very
simple and fast synthetic training data generation method for
DfD using only two front-parallel texture planes in one scene
and compare it with a widely-applied path-tracing method using
a common 3D object dataset. Through real-world experiments,
we show that the 2-plane method provides comparable and even
slightly better performance than the path-tracing method and can
be considered as an alternative method for simple and practical
DfD network training.

Index Terms—Depth estimation, depth from defocus, depth
from focal stack, deep learning

I. INTRODUCTION

Research on image-based depth estimation is gaining more
attention as it applies to a lot of computer vision applica-
tions. Depth from defocus (DfD) is one of the depth sensing
approaches, which estimates the depth map by using one or
multiple defocused images taken by the same camera based on
the physical property that the amount of defocus blur at each
pixel is related to the scene depth. Compared with other active
or passive depth sensing approaches such as time-of-flight,
structured-light, and stereo, DfD has the advantage that it only
requires a single camera and is not affected by occlusions.

Classic DfD methods compute the depth as an optimization
problem [1], [2], [3]. Recently, deep-learning-based DfD meth-
ods have achieved better performance by training a network
model to learn the relationship between the scene depth and
the amount of blur from a large amount of training data [4],
[5], [6], [7]. For the acquisition of a training dataset, some
studies obtained real-world data [7], [8]. However, obtaining
real-world data takes a lot of time and labor. It is also hard to
obtain accurate ground-truth scene depth perfectly aligned to
input defocused images. Thus, many deep-learning-based DfD
methods are based on synthetic training data generation.

There are several previous works on synthetic defocused
image generation for DfD network training. The pixel-wise
blurring method in [5] converts each pixel’s ground-truth
depth value to the standard deviation of Gaussian point spread

Network
(Depth from Defocus)

Real Defocused Images

2-Plane Scene
Synthetic 2-Plane Defocused Images

Training Phase

Application Phase

…

Input 1

…

Network
(Depth from Defocus)

Input 2 Input N

Training Loss

Estimated 
Depth

Estimated 
Depth

Ground-Truth Depth

Near FarFocus Distance

Input 1 Input 2 Input N

Shooting by 
focal stack

Near FarFocus Distance

Fig. 1. The overview of the 2-plane method. In the training phase, a DfD
network is trained using synthetic defocused images generated assuming 2-
plane scenes. In the application phase, the trained network is applied to real
defocused images captured by using a focal stack function of a camera.

function (PSF) and applies the corresponding Gaussian PSF
to an all-in-focus image in a per-pixel manner. However, this
method cannot synthesize accurate defocus blur around depth
boundaries because blurring the all-in-focus image does not
consider the textures of occluded areas, which actually affect
the appearance of real defocus blur. This method also takes
a lot of time to apply blurring processes on each pixel. To
reduce the computational cost, the studies [9], [10] adopt a
layer-driven blur model, which decomposes an all-in-focus
image into discrete depth layers according to per-pixel ground-
truth depth values and applies corresponding Gaussian PSFs
to each layer. The blurred layers are finally composed to form
the defocused image. Although the computational speed is
accelerated by per-layer blurring, this model still does not
consider the occluded areas and thus generates inaccurate
defocus blur at depth boundaries. The study [4] applies a
render engine, Cycles, in Blende [11], where a full 3D scene is
rendered to obtain more realistic defocused images by using a
path-tracing method, at the cost of longer computational time.
Generally, for DfD, a path-tracing method using realistic 3D
object models is expected to bridge the gaps between synthetic
and real-world data.

In this study, we consider if we really need realistic 3D
objects for training DfD networks. To investigate this, we
first present a very simple and fast training data generation
method based on only two front-parallel texture planes, as
illustrated in the top of Fig. 1. Using the input defocused
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Fig. 2. Thin lens model.

image sets generated from 2-plane training scenes, we train
a DfD network, which is applied to real defocused images
at the application phase. We experimentally compare this 2-
plane method with a path-tracing method using a common 3D
object dataset, as in [4], and show that the 2-plane method can
provide competitive performance for real-world scenes, which
suggests that the 2-plane method can be used as a simple and
practical method for training DfD networks.

II. 2-PLANE METHOD

A. Thin Lens Model

We apply a thin lens model [12] to calculate the relationship
between the depth and the blur amount. According to the
illustration in Fig. 2, we describe the lens radius as r, the
focal length as f , the distance from the lens to the image
as s′, the distance from the image sensor to the lens as s,
the focus distance from the sensor as dIFP , and the scene
or object depth from the sensor as d. In the past literature,
the distances dIFP and d are often defined as the distances
from the optical center (the lens center). Instead, in our study,
the distances are measured from the image sensor because
an actual camera lens is made by combining multiple lenses
and it is impossible to accurately measure the position of the
optical center, while the distances from the image sensor can
be measured using a reference mark on the camera identifying
the position of the image sensor.

According to the above descriptions and Fig. 2, the thin lens
model derives the following two equations.

1

s
+

1

dIFP − s
=

1

f
. (1)

1

s′ +
1

d− s
=

1

f
. (2)

Furthermore, following [13] and the calculation of similar
triangles, the blur circle diameter ε follows the relationship of

ε

2r
=

s− s
′

s′ . (3)

This can be rewritten using the aperture size F# = f/2r as

ε =
f

F#

s− s
′

s′ , (4)

where the focal length f and the aperture size F# can be
obtained according to camera settings or camera calibration.
Although the distances s and s′ are not measurable in practice
by the reason mentioned before, we apply Eq. (1) and (2) to
eliminate them as

ε(d) =
dIFP −

√
dIFP

2 − 4fdIFP

2F#

− 2fd

F#(2d− dIFP +
√
dIFP

2 − 4fdIFP )
,

(5)

where the blur circle ε is expressed as a function of the depth
d under the pre-calibrated known focus distance dIFP . We
describe the calibration process for dIFP in Sec. III.

B. 2-Plane Defocused Image Generation

Figure 3 illustrates the overall flow of defocused image
generation by the 2-plane method. Firstly, we prepare an all-
in-focus synthetic texture dataset and randomly select two tex-
tures for the back-plane texture IB and the front-plane texture
IF . To generate a two-plane scene and the corresponding depth
map, we create a random front mask M to identify the front-
plane region. The size and the angle of the front plane, which
is a squared shape, are randomly determined. Then, according
to the random front mask M , the depth map can be obtained by
assigning two random depth values (dB , dF ), where dB > dF ,
for the back plane and the front plane, respectively.

To generate a defocused image under a known dIFP ,
we apply multi-plane image representation, which has been
adopted for a view synthesis problem [14], [15], using only
two planes. The blurring of each texture is performed by
applying a Gaussian PSF kernel [13], which is expressed as

G(x, y, σ) =
1

2πσ2
e−

x2+y2

2σ2 , (6)

where (x, y) represents the coordinate in the PSF kernel and
σ is the standard deviation of the Gaussian PSF. According
to [13], the standard deviation σ is proportionally related to
the blur diameter ε of Eq. (5) and expressed by a function of
the scene depth d as

σ(d) = k
1

p
ε(d), (7)

where p is the pixel size which converts the diameter of the
blur circle ε to the pixel unit and k is a constant parameter to
determine the proportionality characteristic of the used camera,
for which we perform calibration explained in Sec. III.

Given the ground-truth two-plane depth values (dB , dF ) and
the calibrated focus distance dIFP for n-th input image, the
Gaussian kernel for the back plane GB

n and that for the front
plane GF

n can be calculated using Eq. (5), (6), and (7). Using
these kernels, the n-th defocused image Dn is generated by
an alpha blending as

Dn = α⊙ (GF
n ∗ IF ) + (1− α)⊙ (GB

n ∗ IB),
= (GF

n ∗M)⊙ (GF
n ∗ IF ) + (1−GF

n ∗M)⊙ (GB
n ∗ IB),

(8)
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Fig. 3. The overall flow of the 2-plane defocused image generation. The back-plane texture IB and the front-plane texture IF are randomly selected from a
texutre dataset. A random front mask M is generated and the corresponding ground-truth 2-plane depth map is created by assigning two random depth values
(dB , dF ). After applying the back and the front Gaussian PSFs, which are calculated under a known dIFP for n-th input image, to IB , IF , and M , the
defocused image is generated by alpha blending. This process is performed for each of N input images.

Path Tracing2-Plane BlurringPixel-Wise BlurringDepth Map

Fig. 4. The examples of 2-plane defocused images generated with different
blurring methods. Compared with the pixel-wise all-in-focus image blurring
of [5], the 2-plane blurring can produce more realistic depth boundary blurs,
which are close to the blurs of more complex path-tracing of Blender.

where α is determined using the blurred front mask as α =
GF

n ∗M , ⊙ represents the pixel-wise product, and ∗ represents
the convolution operation.

Figure 4 shows the examples of 2-plane defocused images
generated with different blurring methods. Compared with
the pixel-wise all-in-focus image blurring of [5], the 2-plane
blurring can produce more realistic depth boundary blurs,
which are close to the blurs of more complex path-tracing
of Blender. This is because that the 2-plane method considers
the occluded back-plane texture to generate the blurs, while
the pixel-wise blurring ignores that texture.

III. CALIBRATION PROCEDURE

Although the 2-plane method is applicable to any digital
camera that has a focus stack function, to apply it to a real
camera, we need the calibration of the focus distance dIFP for
each of N input images and the constant parameter k, since
those parameters are not directly obtainable and required to
synthesize the input defocused image set as explained in the
previous section.

In our experiments, we used Olympus OM-D E-M5 Mark
III camera with the pixel size p = 3.3µm. We set the aperture

(a) The calibration setup

267.26

(b) The calibration of focus distance

Fig. 5. The process of focus distance calibration. (a) is the setup for the
calibration, where we put a calibration plane with one black-white edge in
front of a fixed camera and captured the images of the plane at different
distances from the image sensor. As in (b), we calculated the maximum
horizontal gradient value of each distance image and obtained the focus
distance by the vertex of a parabola fitted around the largest gradient value.

size F# to 3.2. The focal length f can be read from the camera
lens setting or obtained by a standard camera calibration [16].
We used the focal length of f = 12.22mm calibrated using
the MATLAB camera calibration toolbox. To calibrate the
focus distance of each input image, we used a calibration
plane with one black-white edge, as shown in Fig. 5(a).
We fixed the camera on a camera slider with a scale and
captured the calibration plane by changing the distance from
the plane to the image sensor reference mark on the camera
by 5mm intervals from 210mm to 425mm. Then, as shown in
Fig. 5(b), for each distance image, we calculated the maximum
horizontal image gradient value of the black-white edge. Then,
a parabola fitting is performed using the largest gradient value
and its two neighboring values. The focus distance is then
estimated by the distance corresponding to the vertex of the
parabola, which is shown as the red point in Fig. 5(b).
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Fig. 6. The calibration of the constant parameter k. The horizontal axis
presents the blur circle ε(d)/p in pixel unit and the vertical axis stands for
the real image’s σ(d). Each blue dot corresponds to the ε/p and σ pair of
each real image taken at different distances d. The slope of the orange line
represents the calibrated constant parameter k.

As for the calibration of the constant parameter k in Eq. (7),
we used the same calibration images. For each distance, we
calculated the value of ε(d) according to Eq. (5) using the
camera parameters, the corresponding depth, and the calibrated
focus distance. We then converted it to ε/p by using pixel
size p. Since we cannot directly obtain σ(d) from the real
captured image, we first blurred a synthetic black-white edge
image with discrete σ values and then searched the closest
blurred image that has the most similar intensity change in
the horizontal direction to the real captured image. Then,
we regarded the corresponding σ value as the σ value of
the real captured image. Finally, we estimated the parameter
k = 0.2765 from all the σ and the ε/p pairs obtained from all
the calibration images by applying the least squares method
as shown in Fig. 6.

IV. EXPERIMENTAL RESULTS

A. Training Datasets

We compared the 2-plane method with a more realistic
path-tracing method. The training datasets are generated by
each method assuming a real camera setup with Olympus
OM-D E-M5 Mark III, where we used the focal length of
12.22mm, the aperture size of 3.2, and five input images
with the calibrated focus distances of [213.75mm, 267.26mm,
321.75mm, 379.57mm, 422.45mm]. The target depth range
was set as [215mm, 420mm].

1) Path-Tracing Dataset: To generate 3D scenes with more
realistic and complex 3D objects, we used the same generation
code as the DefocusNet dataset [4]. The code generates a
3D scene by randomly placing several 3D objects of the
Thingi10K object dataset [17]. As object textures, we used
300 texture images from the DTD texture dataset [18] and
randomly assigned one texture to one object. The input defo-
cused image set was then rendered by utilizing Cycles, which
is Blender’s path-tracing-based rendering engine [19]. The
samples of generated data are shown in Fig. 7(a), where each
input image set contains five defocused images of 256× 256.
We generated 1,600 scenes for training. For the generation
time, it takes around 18 seconds to generate the five defocused
images of one scene with Nvidia GeForce GTX 1080 Ti GPU.

2) 2-Plane Dataset: We generated the 2-plane dataset by
the method explained in Section II-B. We used the same 300

Input 1 Input 2 Input 3 Input 4 Input 5 Depth Map

Input 1 Input 2 Input 3 Input 4 Input 5 Depth Map(a) Training dataset created by the path-tracing method.

Input 1 Input 2 Input 3 Input 4 Input 5 Depth Map

Input 1 Input 2 Input 3 Input 4 Input 5 Depth Map

(b) Training dataset created by the 2-plane method.

Fig. 7. The samples of synthetic training datasets.

texture images as the path-tracing dataset and generated 1,600
scenes for training. The sample of generated data can be seen
in Fig. 7(b). For the time required for the data generation,
it takes only about 0.2 seconds for one scene using Intel(R)
Core(TM) i7-7820X CPU, which is 90 times faster than the
path-tracing method.

B. DfD Networks

We adopted two existing DfD networks: AiFDepthNet [6]
and DefocusNet [4]. The network models were trained from
the scratch using the Adam optimizer [20] with the parameters
of (β1 = 0.9, β2 = 0.999), the learning rate of 10−4, and the
training patch size of 256× 256.

For DefocusNet, we trained the network with the batch size
of 4 and the epoch of 2,000, which are the original settings in
the provided training code. For AiFDepthNet, we empirically
used the batch size of 16 and the epoch of 1,000 because only
the network architecture is available and the training code is
not provided.

C. Real-World Testing Data

We evaluated the trained network models using three real-
world testing scenes. The real-scene defocused images were
captured by an Olympus OM-D E-M5 Mark III camera with
the camera parameter settings as mentioned in Section IV-A.
The image resolution is 2358×1760 and enlarged parts of the
captured images are shown in Fig. 8.

To obtain the ground-truth depth, we used an Intel Re-
alSense LiDAR L515 sensor with 1024 × 768 depth map
resolution, which was placed next to the camera. The intrinsic
and extrinsic parameters between the camera and the LiDAR
were obtained by stereo camera calibration [16].

D. Evaluation Metric

Figure 9 shows our evaluation procedure. We compared the
ground-truth LiDAR depth and the estimated DfD depth by
converting them to the point clouds at the same 3D coordinates
using pre-calibrated extrinsic and intrinsic parameters. This is
because the LiDAR depth map and the estimated DfD depth
map are obtained for different viewpoints and resolutions,
and thus warping the LiDAR depth to the camera viewpoint
causes an occlusion problem. Specifically, since the 3D points
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domain. Thus, we compare them as the 3D point clouds projected to the same
3D coordinate and use Accuracy error, which is defined as the distance from
each estimated 3D point to its closest ground-truth LiDAR 3D point.

converted from the LiDAR depth are sparse, the occluded
3D points from the camera viewpoint can be projected to
the camera image plane, leading to inappropriate evaluation
of depth maps. To address the sparseness of the LiDAR 3D
points, we reproject the LiDAR 3D points to the camera image
to just mask out the camera pixels that warped LiDAR 3D
depth does not exist. Then, to address the occlusion problem,
we evaluate the depth results as the 3D point clouds by using
the Accuracy error [21], where the Accuracy is defined as the
distance from each estimated 3D point to its closest ground-
truth LiDAR 3D point.

E. Comparison on Each Network

We trained AiFDepthNet and DefocusNet using 1,600 train-
ing scenes generated by the 2-plane and the path-tracing
method, respectively. Then, the depth maps for testing real-
world scenes were estimated by each trained model. The
visualization results are shown in Fig. 10. The quantitative
results in Table I indicates that the 2-plane method can provide
similar and even slightly better performance compared to the
path-tracing method. It also shows that the performance of
DefocusNet is slightly better on average than AifDepthNet
for both the path-tracing and the 2-plane methods.
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Fig. 10. The visualization results of the 2-plane method and the path-tracing
method with AiFDepthNet and DefocusNet.

TABLE I
THE ACCURACY ERROR (THE LOWER IS THE BETTER) OF THE 2-PLANE

AND THE PATH-TRACING METHODS WITH AIFDEPTHNET AND
DEFOCUSNET. ALL NUMERICAL VALUES ARE IN MILLIMETERS.

Network Method Scene 1 Scene 2 Scene 3 Mean

AiFDepthNet Path Tracing 6.65 6.65 5.80 6.37
2-Plane 6.566.566.56 5.635.635.63 5.395.395.39 5.865.865.86

DefocusNet Path Tracing 6.31 6.21 5.89 6.03
2-Plane 5.885.885.88 5.615.615.61 4.954.954.95 5.485.485.48

F. Effect of Number of Training Data

To investigate the effect of the number of training data,
we evaluated the 2-plane method and the path-tracing method
trained with AiFDepthNet or DefocusNet using 100, 200,
400, 800, and 1,600 training scenes, respectively. From the
results shown in Fig. 11, we can see that the 2-plane method
provides competitive performance compared with the path-
tracing method for both networks. With regard to the per-
formance of the two networks, AiFDepthNet converges faster
using the 2-plane method than the path-tracing method. As
for DefocusNet, both the path-tracing and the 2-plane methods
show relatively good performance with only 100 training data.

G. Comparison of 2-Plane and 1-Plane Dataset

To verify that at least two texture planes are needed for
training DfD networks, as the 2-plane scene contains the
scenarios of depth discontinuities, we compared the 2-plane
method with the 1-plane method that only uses one texture
plane in one scene. For each method, DefocusNet was trained
with 1,600 scenes of training data.
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Fig. 11. The accuracy error (the lower is the better.) of the 2-plane method
and the path-tracing method with different numbers of training data. Each
method was trained using 100, 200, 400, 800, and 1,600 scenes of training
data and the same real-world data were used for testing.
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Fig. 12. The visual comparison of the 1-plane and the 2-plane methods with
DefocusNet. The 1-plane method has difficulty in accurately estimating the
depth of object boundaries.

TABLE II
THE ACCURACY ERROR OF 1-PLANE AND 2-PLANE METHODS WITH

DEFOCUSNET. THE LOWER IS THE BETTER.

Network Method Scene 1 Scene 2 Scene 3 Mean

DefocusNet 1-Plane 7.15 5.78 5.68 6.20
2-Plane 5.885.885.88 5.615.615.61 4.954.954.95 5.485.485.48

The visual results in Fig. 12 demonstrate that the 2-plane
method can obtain the depth map with more sharp and accurate
object boundaries compared with the 1-plane method. The
numerical evaluation in Table II also verifies that the 2-plane
method outperforms the 1-plane method in all the scenes.

V. CONCLUSION

In this paper, we have presented a very simple and fast
2-plane training data generation method for DfD and have
investigated whether realistic 3D object models are necessary
for training DfD networks by comparing the performance of
the 2-plane method and a path-tracing method using a common
3D object dataset. Experimental results using real-world data
have demonstrated that the 2-plane method can yield similar
and even slightly outperformed results compared with the path-
tracing method. This suggests that the 2-plane method can be
applied as a simple and practical method for DfD network

training. Our future work includes the evaluation of the 2-
plane method on more large-scale real-world scenes.
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