A Real-Time RGB-NIR Imaging System Using a Single Image Sensor

Kazunori Yoshizaki¹ Munenori Fukunishi¹ Yasuhiro Komiya¹ Yusuke Monno² Masayuki Tanaka² Masatoshi Okutomi² Steven Lansel³ ¹Olympus R&D Group ²Tokyo Institute of Technology ³Olympus Communication Technology of America

Website: http://www.ok.ctrl.titech.ac.jp/res/MSI/MSI_e.html

Our Prototype RGB-NIR Imaging System Novel RGB-NIR sensor

Microscopic

image

Proposed pattern

Hardware implementation of image processing pipeline

Spectral sensitivity

Real-time display of

RGB-NIR image

		Out	put	
Mode	pixels		bit	fps
	h	V	depth	ips
1	4096	3072	12	30
2	2816	2816	12	60
3	1984	1984	10	120

Operation modes

Guide image

Example Applications

Medical Imaging (ICG fluorescence observation)

NIR image

Food Inspection

RGB + NIR

RGB-NIR Sensor Design

Overview

• We investigated the performance of three patterns.

High sampling density of the G band → Utilize for demosaicking like Bayer CFA

• Simulation performance for noise-free case (see [4] for details)

	Uniform	Proposed 1	Proposed 2
Color PSNR (sRGB)	32.25	34.48	34.02
PSNR (NIR)	33.87	38.37	40.22
Average	33.06	36.43	37.12

Image Processing

Overall pipeline

Subsampled G

Subsampled R

Subsampled B

Subsampled NIR

(to be implemented on hardware)

G pixel value

interpolation

sRGB

Proposed Demosaicking Algorithm [3,4]

Residual

interpolation

Residual

interpolation

Residual

interpolation

Interpolated G

Interpolated R

Interpolated B

Interpolated NIR

Linear Color Correction

$$\begin{bmatrix} SR \\ SG \\ SB \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} R \\ G \\ B \\ NIR \end{bmatrix}$$

- [1] Kiku et al., "Simultaneous Capturing of RGB and Additional Band Images Using Hybrid Color Filter Array," IS&T/SPIE Electronic Imaging 2014.
- [2] Monno et al., "N-to-sRGB Mapping for Single-Sensor Multispectral Imaging," ICCV Workshop (CPCV) 2015.
- [3] Kiku et al., "Beyond Color Difference: Residual Interpolation for Color Image Demosaicking," IEEE TIP 2016.
- [4] Teranaka et. al., "Single-Sensor RGB and NIR Image Acquisition: Toward Optimal Performance by Taking Account of CFA Pattern, Demosaicking and Color Correction," IS&T Electronic Imaging 2016.