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Abstract—In recent years, many applications using a set of red-
green-blue (RGB) and near-infrared (NIR) images, also called
an RGB-NIR image, have been proposed. However, RGB-NIR
imaging, i.e., simultaneous acquisition of RGB and NIR images, is
still a laborious task because existing acquisition systems typically
require two sensors or shots. In contrast, single-sensor RGB-
NIR imaging using an RGB-NIR sensor, which is composed of a
mosaic of RGB and NIR pixels, provides a practical and low-cost
way of one-shot RGB-NIR image acquisition. In this paper, we
investigate high-quality system designs for single-sensor RGB-
NIR imaging. We first present a system evaluation framework
using a new hyperspectral image dataset we constructed. Differ-
ent from existing work, our framework takes both the RGB-NIR
sensor characteristics and the RGB-NIR imaging pipeline into
account. Based on the evaluation framework, we then design
each imaging factor that affects the RGB-NIR imaging quality
and propose the best-performed system design. We finally present
the configuration of our developed prototype RGB-NIR camera,
which was implemented based on the best system design, and
demonstrate several potential applications using the prototype.

Index Terms—Image sensor, imaging pipeline, filter array pat-
tern, demosaicking, color correction, RGB, near-infrared (NIR).

I. I NTRODUCTION

I N recent years, many applications using a set of red-green-
blue (RGB) and near-infrared (NIR) images, also called

an RGB-NIR image, have been proposed. Different spectral
properties between RGB and NIR images offer useful infor-
mation for various applications such as image restoration [1],
image enhancement [2]–[4], image fusion [5], [6], dehazing
[7], [8], scene categorization [9], face recognition [10], shadow
detection [11], and heart rate measurement [12]. However,
simultaneous acquisition of RGB and NIR images, also termed
RGB-NIR imaging, is still a laborious task because existing
acquisition systems typically require two sensors [2], [3] or
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Fig. 1. Image sensors and their sensitivity: (a) RGB sensor, (b) RGB sensor
sensitivity, (c) RGB-NIR sensor, and (d) RGB-NIR sensor sensitivity.

two shots [9], [11], where one is required for RGB and the
other is required for NIR. The necessity of two sensors or shots
also makes the systems large, expensive, and complicated.

In current color digital cameras, single-senor RGB imaging
using the Bayer color filter array (CFA) [13] (see Fig. 1(a))
is well established [14]. An image sensor equipped with the
Bayer CFA records only one pixel value among RGB values at
each pixel. The other two missing pixel values are estimated
from the recorded mosaic data of RGB values by an inter-
polation process called demosaicking (or demosaicing) [15],
[16]. The combination of the Bayer CFA and the demosaicking
process enables one-shot acquisition of the RGB image using
only a single image sensor, and hence reduces the size and
cost of the camera.

The one-shot, compact and low-cost properties of the single-
sensor RGB imaging are also desirable for RGB-NIR imaging.
Therefore, the extension of the single-sensor RGB imaging to
single-sensor RGB-NIR imaging has received increasing atten-
tion [17]–[22]. This extension can be realized by developing
an RGB-NIR sensor that is an image sensor equipped with
an RGB-NIR filter array (see Fig. 1(c) for an example). The
RGB-NIR sensor offers a practical way of one-shot RGB-NIR
imaging, without increased size and cost from current color
digital cameras.

Similar to conventional RGB sensors with the Bayer CFA,
the raw output of an RGB-NIR sensor is mosaic data of R,
G, B, and NIR values. Therefore, to obtain the RGB and the
NIR images in a desired output format, the mosaic data must
be processed through an imaging pipeline. As a consequence,
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the RGB-NIR imaging quality is affected by both the RGB-
NIR sensor characteristics, such as a filter array pattern (FAP)
and spectral sensitivity, and the RGB-NIR imaging pipeline
converting the mosaic data to the output RGB and NIR images.
However, existing research on single-sensor RGB-NIR imag-
ing mainly focuses on either sensor characterization [17], [18]
or image reconstruction methodology [19]–[22]. In addition,
to the best of our knowledge, there is no existing work that
systematically evaluates different sensor and imaging pipeline
designs for high-quality single-sensor RGB-NIR imaging.

In this paper, our purpose is to propose high-quality system
designs for single-sensor RGB-NIR imaging by taking both the
sensor characteristics and the imaging pipeline into account.
Specifically, we investigate the following imaging factors that
affect the RGB-NIR imaging quality.

RGB-NIR FAPs and demosaicking algorithmsare core
factors of single-sensor RGB-NIR imaging systems. Although
the 2×2 RGB-NIR FAP in Fig. 1(c) is commonly adopted
(e.g., [19]–[24]), there are few comparative studies of different
RGB-NIR FAPs. In this work, we propose two RGB-NIR
FAPs and compare them with the common 2×2 RGB-NIR
FAP. We also propose a demosaicking framework for our FAPs
using state-of-the-art residual interpolation [25].

Color correction is particularly important for single-sensor
RGB-NIR imaging. As shown in Fig. 1(d), typical RGB filters
have spectral sensitivity in the NIR domain. These phenomena
are refereed to as spectral crosstalks [21], [22]. For current
RGB sensors, an NIR-cut filter is placed in front of the sensor
(see Fig. 1(a)) to avoid undesirable effects of the spectral
crosstalks for color representation. However, the NIR-cut filter
needs to be removed for single-sensor RGB-NIR imaging,
resulting in severe color shifts of the acquired RGB image.
Figure 2 shows examples of the color shift for the color
chart. The RGB image of the RGB-NIR sensor in Fig. 2(b)
is more reddish and less color saturated than that of the RGB
sensor in Fig. 2(a). The role of color correction is to correct
such color shifts and reproduce the image with desired color
representation, typically in the sRGB color space as shown in
Fig. 2(c). In this work, we evaluate standard least-squares color
correction algorithms [26]–[28] for single-sensor RGB-NIR
imaging. We also propose an effective refinement process to
suppress demosaicking error amplification by color correction.

Spectral sensitivity is another important factor that affects
the color fidelity of the acquired RGB image and the spec-
tral property of the acquired NIR image. However, spectral
sensitivity of manufacturable RGB-NIR sensors is physically
and technically limited. One feasible option to customize the
spectral sensitivity is to place an optical filter in front of
the sensor or lens. In this work, we maximize the RGB-NIR
imaging quality by investigating an optimal optical filter.

To design a high-quality single-sensor RGB-NIR imaging
system, it is important to evaluate the above-mentioned factors
considering the overall system performance. Therefore, in this
paper, we first construct a system evaluation framework. For
the evaluation, we use our new hyperspectral image dataset
that covers the spectral range from 420nm to 1000nm. We then
propose the best-performed system design by properly design-
ing each imaging factor based on the evaluation framework.

(a) RGB of the RGB sensor
in Fig. 1(b)

(b) RGB of the RGB-NIR
sensor in Fig. 1(d)

(c) sRGB

Fig. 2. Simulated color chart images: (a) RGB of the RGB sensor, (b) RGB
of the RGB-NIR sensor, and (c) sRGB. Daylight is used for simulating (a)
and (b). The image (b) is more reddish and less color saturated than the image
(a) due to the spectral crosstalks of the RGB-NIR sensor.

We finally validate the realizability of the best system design
by our developed prototype RGB-NIR camera. Contributions
of this paper are summarized as follows.

• We construct a system evaluation framework for single-
sensor RGB-NIR imaging. Our evaluation framework
takes both the RGB-NIR sensor characteristics and the
RGB-NIR imaging pipeline into account. A part of the
dataset images and sample codes to reproduce the frame-
work is publicly available at our website1.

• Based on the evaluation framework, we propose high-
quality system designs for single-sensor RGB-NIR imag-
ing. We demonstrate that our proposed RGB-NIR FAP
called the “dense-NIR FAP” provides the best perfor-
mance among compared three RGB-NIR FAPs.

• We validate the realizability of the best system design,
which is based on our dense-NIR FAP, by our developed
prototype RGB-NIR camera that operates in real time.
We demonstrate several potential applications using the
prototype camera.

This paper is an extended version of our conference papers
[29]–[31], in which we have proposed two RGB-NIR FAPs,
demosaicking frameworks for the FAPs, and a color correction
refinement process for RGB-NIR sensors. In this paper, we
combine all these proposals, with more dedicated discussion
and experiments for high-quality system designs, and present a
new content of the spectral sensitivity design. We also present
the configuration of our newly developed prototype RGB-NIR
camera and several applications using the prototype, while the
conference papers only contain simulation results.

The rest of this paper is organized as follows. Section II
briefly reviews related work. Section III presents our system
evaluation framework and proposed high-quality system de-
signs. Section IV presents the configuration and the applica-
tions of our developed prototype RGB-NIR camera. Section V
concludes the paper and presents future work.

II. RELATED WORK

A. RGB-NIR FAPs and demosaicking algorithms

Existing work (e.g., [19]–[24]) commonly adopts the 2×2
RGB-NIR FAP of Fig. 3(b), where half of the G filters in the
Bayer FAP (see Fig. 3(a)) are replaced with the NIR filters.
In other words, all spectral bands are uniformly sampled. In
what follows, we refer to this FAP as the uniform FAP. A few
literatures have presented a demosaicking algorithm for the

1http://www.ok.sc.e.titech.ac.jp/res/MSI/SENJ-RGB-NIR.html
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Fig. 3. Different FAPs: (a) The Bayer FAP [13], (b) the uniform FAP [19]–
[24], (c) the Spooren et al. FAP [17], (d) the Nedelcu et al. FAP [32], (e) our
dense-NIR FAP, and (f) our sparse-NIR FAP.

TABLE I
SAMPLING DENSITY OF EACH BAND IN DIFFERENTFAPS.

FAP Size R G B NIR

Bayer 2×2 1/4 1/2 1/4 –
Uniform 2×2 1/4 1/4 1/4 1/4

Our dense-NIR 4×4 1/8 1/2 1/8 1/4
Our sparse-NIR 10×10 1/5 1/2 1/5 1/10
Spooren [17] 4×4 1/8 1/4 1/8 1/2
Nedelcu [32] 2×6 1/6 1/6 1/6 1/2

Lu [33] 4×4 Use specialized filters
Sadeghipoor [34] 4×4 Use specialized filters

uniform FAP in detail [20]–[22]. Martinello et al. proposed an
interpolation-based algorithm that can effectively incorporate
an existing high-quality Bayer demosaicking algorithm for
the RGB image reconstruction [20]. Tang et al. modeled the
demosaicking process as an optimization problem and solved
it with image regularization functions [21]. Hu et al. recently
improved the Tang et al. algorithm using convolutional sparse
cording to solve the optimization problem [22]. Although the
optimization-based approaches [21], [22] offer higher perfor-
mance, they require higher computational cost (e.g., more than
8 minutes for a 380×336 pixel image, as reported in [22]).

As other RGB-NIR FAPs, Spooren et al. proposed a 4×4
FAP of Fig. 3(c) [17] and Nedelcu et al. proposed a 2×6 FAP
of Fig. 3(d) [32], respectively. In these FAPs, half of the pixels
are the NIR pixels, and thus the NIR imaging is the main
target. The demosaicking algorithms for these FAPs have not
described in detail in [17], [32]. Lu et al. and Sadeghipoor et al.
proposed several frameworks that jointly solve the FAP design
and the demosaicking problems [33]–[35]. Although these
frameworks theoretically work well, manufacturing of the
resultant sensors are technically difficult due to the necessity
of the specialized spectral filters.

In this work, considering the reproducibility of the state-of-
the-art demosaicking algorithm and the feasibility of hardware
implementation, we consider the most common uniform FAP
in our system design. We also propose two RGB-NIR FAPs,
as shown in Fig. 3(e) and 3(f), and compare them with the
uniform FAP. Table I summarizes the sampling density of each
band in the above-mentioned FAPs.

B. Color correction algorithms

Color correction is a process that transforms a camera-
specific color space into a standard or a desired color space,

typically the XYZ or the sRGB color space [36], [37]. For
conventional RGB sensors, least-squares algorithms, such as
linear color correction (LCC) [26], polynomial color correc-
tion (PCC) [27], and root-polynomial color correction (RPCC)
[28], are the most widely used algorithms. The least-squares
algorithms can be extended for the RGB-NIR sensors [19],
[38]. There are several algorithms that are designed for the
RGB-NIR sensors, such as based on spectral decomposition
[39], sparse representation [40], and neural networks [41],
[42]. Tang et al. and Hu et al. jointly solved the demosaicking
and the color correction problems as the optimization frame-
work [21], [22]. However, these algorithms generally require
higher computational cost and memory than the least-squares
algorithms.

In this work, we evaluate hardware-efficient least-squares
algorithms, i.e., LCC, PCC, and RPCC, for our system design.
We also propose an effective refinement process to suppress
demosaicking error amplification, which is a new challenge of
color correction for the RGB-NIR sensors.

C. Spectral sensitivity

Some research groups have analyzed manufacturable spec-
tral sensitivity for the RGB-NIR sensors, based on their own
technology such as the gated CMOS sensor [17], the pixel-
level integration of the NIR-cut filter [18], the transverse field
detector [43], the monolithically integrating interference filters
[44], and the thin film deposition and etching [45].

In this work, we developed a prototype RGB-NIR camera
with the spectral sensitivity shown in Fig 1(d), which was
manufacturable by our technology. Since the spectral sensi-
tivity of manufacturable sensors is physically and technically
limited, we introduce an optical notch filter in front of the
lens to improve the RGB-NIR imaging quality. Although the
integration of the notch filter is implicitly performed in some
existing work (e.g., [21]), we explicitly optimize the cut-off
wavelengths of the notch filter.

III. PROPOSEDHIGH-QUALITY SYSTEM DESIGNS

A. Hyperspectral image dataset

We start with the description of our constructed hyperspec-
tral image dataset, which was used for our system evaluation.
We used a monochrome camera and two VariSpec tunable
filters [46], VIS for 420-650nm and SNIR for 650-1000nm,
for capturing each hyperspectral image. The captured hyper-
spectral image consists of a set of narrow-band images from
420nm to 1000nm at every 10nm intervals. The hyperspectral
image was then converted into a form of spectral reflectance
by a calibration process using a colorchecker whose spectral
reflectance property is known. The dataset contains 40 scenes
with cropped 512×512 pixels, as shown in Fig. 4

B. System evaluation framework

Figure 5 shows the overview of our system evaluation
framework. The input of the framework is hyperspectral re-
flectance data as explained above. As the illumination source,
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Fig. 4. Forty scenes in our hyperspectral image dataset.

we assume daylight, which has broad spectral power distribu-
tion in both visible and NIR domains. The spectral distribution
of daylight was measured using a spectrometer (see Fig. 5(a)).

The lower part of Fig. 5 shows the generation process of
ground-truth images. For the RGB imaging, we set the sRGB
color space as our target color space. To generate the ground-
truth sRGB image, the hyperspectral reflectance data is firstly
converted to the XYZ image using the XYZ color matching
functions (red, green, and blue lines in Fig. 5(d)). Then, the
ground-truth sRGB image is generated by the XYZ-to-sRGB
transformation matrix calculated using the white point of the
daylight. For the NIR imaging, we also assume a target NIR
space without spectral crosstalks between the visible and the
NIR domains. Although the target NIR spectral range depends
on applications, without loss of generality, we set the spectral
range from 800nm to 1000nm as our target NIR space. The
target NIR sensitivity function is shown as the gray line in
Fig. 5(d). The relative sensitivity of the target NIR function is
normalized to have the same area with the Y functions, i.e.,
the green line in Fig. 5(d). The ground-truth target NIR image
is directly generated from the hyperspectral reflectance data

using the target NIR function.
The upper part of Fig. 5 shows the simulation flow of the

single-sensor RGB-NIR imaging system. Firstly, full camera
RGB and NIR images are generated using the spectral sensi-
tivity functions of the RGB-NIR sensor (see Fig. 5(b)). As an
option, the spectral sensitivity can be modified using an optical
filter, which is placed in front of the lens. The full camera
RGB and NIR images are then sub-sampled according to the
RGB-NIR FAP of the sensor. The sub-sampled R, G, B, and
NIR images are then interpolated by the demosaicking process.
The demosaicked camera RGB and NIR images with the
spectral crosstalks are finally converted to the output images
in the target sRGB and NIR spaces by the color correction
and refinement processes. In the performance evaluation, the
output RGB and NIR images generated by the system are
compared with the ground-truth sRGB and target NIR images
(see the red dashed box in Fig. 5). We evaluate peak signal-
to-noise ratio (PSNR) of each band and multispectral PSNR
(MPSNR), which is calculated as below.

MPSNR = 10 · log 2552

1
4M

∑4
i=1

∑M
j=1 ||x̂ij − xij ||22

, (1)

whereM is the total number of pixels,̂xij is the estimated
pixel value at thej-th pixel in the i-th band, wherei =
{R,G,B,NIR}, and xij is the corresponding ground-truth
pixel value. MPSNR evaluates the overall imaging quality of
the RGB-NIR imaging system.

In the following subsections, we propose high-quality sys-
tem designs by considering both the RGB-NIR characteristics
(the orange dashed box in Fig. 5) and the single-sensor RGB-
NIR imaging pipeline (the purple dashed box in Fig. 5).
Specifically, we design RGB-NIR FAPs and demosaicking
algorithms in subsection III-C, evaluate least-squares color
correction algorithms in subsection III-D, propose an effective
color correction refinement algorithm in subsection III-E, and
introduce an optimal notch filter, as shown in Fig. 5(c), in
subsection III-F.



IEEE SENSORS JOURNAL, VOL.XX, NO.XX, XXXXX 20XX 5

Sub-sampled NIR

Sub-sampled R

Bayer

demosaicking

Bicubic

interpolation

Sub-sampled B

Sub-sampled G

Interpolated NIR

Interpolated R

Interpolated B

Interpolated G

Green pixel 

replacement

Bayer G

Residual 

interpolation

Interpolated NIR

Independent interpolation as in [19]

Guided 

interpolation

Guide

Fig. 6. The demosaicking framework of [20] for the uniform FAP.

C. RGB-NIR FAPs and demosaicking algorithms

1) Considered FAPs:We consider the common uniform
FAP and two proposed FAPs. Figure 3(c) and 3(d) show our
proposed FAPs. The feature of our FAPs is that the G filters
are sampled in the same density as that of the Bayer FAP.
Motivated by state-of-the-art Bayer demosaicking algorithms,
we later propose a demosaicking framework that effectively
exploits the high sampling density of the G band. The two
FAPs are discriminated by the sampling density of the NIR
filters. The FAP of Fig. 3(c) samples the NIR filters in the
density of 1/4, while the FAP of Fig. 3(d) samples them in
the density of 1/10. In what follows, we refer to the first FAP
as the dense-NIR FAP, and the second FAP as the sparse-
NIR FAP, respectively. We next describe the demosaicking
frameworks for the considered FAPs.

2) Demosaicking framework for the uniform FAP:Since
our goal is to realize a real-time system, we adopt the compu-
tationally efficient interpolation-based algorithm by Martinello
et al. [20] for the uniform FAP. Figure 6 shows the demo-
saicking framework of [20]. The algorithm first interpolates
the sub-sampled NIR by bicubic interpolation. Then, the
algorithm estimates the missing G pixel values at the NIR
pixels by interpolating the G−NIR components. This process
is called green pixel replacement in [20]. As the consequence
of the green pixel replacement, the Bayer mosaic image is
acquired. Therefore, an existing Bayer demosaicking algorithm
can be applied to reconstruct the RGB image. We apply the
residual interpolation (RI)-based algorithm [25], which is one
of the state-of-the-arts. For the NIR image reconstruction,
we consider two approaches. The first one is independent
interpolation that directly uses the interpolated NIR image by
bicubic interpolation as the output. The second one is guided
interpolation that uses the interpolated G image as the guide
for interpolating the sub-sampled NIR, assuming the spectral
correlation between the G and the NIR bands. Although only
the first approach is taken in [20], we also consider the second
approach because it is known that the visible and the NIR
images generally have correlation to some extent. We apply
the RI [25] for the guided interpolation in the second approach.

3) Demosaicking framework for the dense-NIR and the
sparse-NIR FAPs:Figure 7 shows the demosaicking frame-
work of our proposed algorithm for the dense-NIR FAP. The
algorithm first interpolates the most dense G band by the RI-
based algorithm [47]. The algorithm then interpolates the R
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Fig. 7. Our proposed demosaicking framework for the dense-NIR FAP. The
same framework can be applied to the sparse-NIR FAP.

TABLE II
PERFORMANCE EVALUATION OF THE DEMOSAICKING ALGORITHMS.

AVERAGE PSNRAND MPSNROF ALL 40 SCENES ARE PRESENTED. THE

BOLD TYPEFACE REPRESENTS THE BESTMPSNRFOR EACHFAP.

FAP NIR Rec. R G B NIR MPSNR

Uniform
Indep.

39.15 42.86 45.28
36.14 39.44

Guided 42.00 41.66

Dense-NIR
Indep.

38.62 46.03 44.82
36.14 39.46

Guided 43.47 42.17

Sparse-NIR
Indep.

40.20 47.68 47.05
30.88 36.18

Guided 40.65 42.59

and the B bands by exploiting the interpolated G image as the
guide for RI. The above-mentioned two approaches are taken
for the NIR image reconstruction. The same demosaicking
framework can be applied to the sparse-NIR FAP, which also
has the high sampling density of the G band.

4) Performance evaluation:Table II summarizes the de-
mosaicking performance. Here, to evaluate pure demosaicking
performance regardless of color correction, the full “camera”
RGB and NIR images without mosaicking (see Fig. 5) were
used as the ground truths for calculating PSNR and MPSNR.
The second column in Table II represents the used approach
for the NIR image reconstruction (NIR Recon.). The approach
“Indep.” represents the independent interpolation, while the
approach “Guided’ represents the guided interpolation.

As shown in Table II, for the RGB image reconstruction,
the sparse-NIR FAP offers the best performance. This is
reasonable because the sparse-NIR FAP assigns more pixels
to the RGB filters than the other two FAPs. For the NIR
image reconstruction, the guided interpolation works much
better than the independent interpolation. This is because, for
many of objects in our dataset, the G and the NIR images
share the edge and texture locations, even if there are intensity
differences, due to the spectral sensitivity overlaps between
the G and the NIR bands in our RGB-NIR sensor. In what
follows, we adopt the guided interpolation for the NIR image
reconstruction.

D. Color correction algorithms

We next evaluate standard least-squares color correction
algorithms [26]–[28] for single-sensor RGB-NIR imaging.
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TABLE III
PERFORMANCE EVALUATION OF THE COLOR CORRECTION ALGORITHMS.
AVERAGE PSNRAND MPSNROF ALL 40 SCENES ARE PRESENTED. THE

BOLD TYPEFACE REPRESENTS THE BESTMPSNRFOR EACHFAP.

FAP Model R G B NIR MPSNR

Uniform

No CC 20.11 19.66 20.58 14.70 17.68
LCC 29.94 29.07 31.92 26.01 28.47
PCC 29.51 28.90 31.99 26.74 28.65

RPCC 29.79 28.94 32.15 27.37 28.85

Dense-NIR

No CC 20.12 19.72 20.58 14.71 17.69
LCC 29.00 32.80 30.56 26.09 28.74
PCC 28.58 32.38 30.74 26.88 28.93

RPCC 29.10 32.46 30.80 27.38 29.16

Sparse-NIR

No CC 20.16 19.73 20.60 14.73 17.70
LCC 28.63 33.01 29.82 24.45 27.79
PCC 28.17 32.63 30.03 25.17 28.04

RPCC 28.51 32.81 30.33 25.82 28.38

1) General formulation:The least-squares algorithms for
the RGB-NIR sensors can generally be formulated as

q = Mp, (2)

where q = [r′, g′, b′, n′]T represents the output color-
corrected RGB and NIR values,p ∈ RN is an input vector
formed by camera RGB values, andM ∈ R4×N is the color
correction matrix. The elements and the dimension of the input
vectorp depend on the used model, which will be explained
later. The matrixM is typically calculated using training color
patches by least-squares regression as

M̂ = argmin
M

∥Qt −MPt∥2F , (3)

where∥ · ∥2F is the Frobenius norm,Qt ∈ R4×K is the matrix
containing the target vectors ofK training patches, where the
target sRGB and NIR spaces were defined in subsection III-B,
Pt ∈ RN×K is the matrix containing the corresponding input
vectors formed by the camera RGB values of the patches. In
our evaluation, we used the 96 patches of the X-rite SG color
chart, as shown in Fig. 2, for training the color correction
matrix. We next explain the used LCC [26], PCC, [27] and
RPCC [28] models.

2) LCC model:LCC only uses the first-order linear terms.
The input camera intensity vector of LCC is formed asplcc =
[r, g, b, n]T , wherer, g, b, andn represent the camera R, G,
B, and NIR values, respectively.

3) PCC model:PCC exploits high-order terms, in addition
to the linear terms. In this work, we consider the second-order
PCC. The input vector of the second-order PCC is formed as
ppcc = [r, g, b, n, rg, rb, rn, gb, gn, bn, r2, g2, b2, n2]T .

4) RPCC model:RPCC modifies PCC by takingkth root
of each k-degree term to improve the robustness in intensity
changes. In this work, we consider the second-order RPCC.
The input vector of the second-order RPCC is formed as
p = [r, g, b, n,

√
rg,

√
rb,

√
rn,

√
gb,

√
gn,

√
bn]T . We note

that the dimension of the RPCC is lower than PCC because
[
√
r2,

√
g2,

√
b2,

√
n2]T = [r, g, b, n]T .

5) Performance evaluation:Table III shows the perfor-
mance comparison of the color correction algorithms. In the
table, “No CC” represents the case that no color correction

(a) Demosaicked
camera RGB

(b) Color-corrected
result by RPCC

(c) Proposed
refinement result

(d) Ground-truth
sRGB

Fig. 8. An example of the demosaicking error amplification for the uniform
FAP and the effect of our proposed refinement algorithm: (a) The demosaicked
camera RGB image, (b) the color-corrected image by RPCC, (c) the result
image after the refinement, and (d) the ground-truth sRGB image.

Color 

correction

Guided

filtering

Demosaicked

camera RGB-NIR

Output 

RGB-NIR

Guide

selection

Fig. 9. The flow of our proposed color correction refinement algorithm.

is performed. In terms of the MPSNR performance, we can
confirm that the state-of-the-art RPCC consistently offers the
best performance for all FAPs. Therefore, In the following
experiments, we adopt RPCC.

E. Color correction refinement algorithms

We next address a new challenge of color correction for the
RGB-NIR sensors, i.e., demosaicking error amplification, and
propose an effective refinement process to suppress the error
amplification.

1) Problem statement:One issue of color correction for the
RGB-NIR sensors is the amplification of demosaicking errors.
Figure 8 shows an example of the error amplification for the
uniform FAP, where Fig. 8(a) is the demosaicked camera RGB
image and Fig. 8(b) is the color-corrected image by RPCC. It is
apparent that the demosaicking errors are severely amplified
in the color-corrected image. In the following, we propose
an effective color correction refinement algorithm that can
suppress the error amplification, as shown in Fig. 8(c).

2) Algorithm flow: Figure 9 shows the flow of our pro-
posed refinement algorithm. Our algorithm is simple and only
adds the guided filtering process [48] to the standard color
correction process. The guided filtering is a powerful edge-
preserving filtering using a guide image that has correlation
with the input filtered image. Our idea is that the amplified er-
rors “after” color correction can be filtered out with the guided
filtering by using the image “before” the color correction, i.e.,
before the amplification as the guide. To effectively select the
guide channel, we propose two manners as below.

3) Channel-by-channel guided manner:The guide image
is selected as channel-by-channel. For example, the color-
corrected R image is filtered by using the demosaicked camera
R image as the guide. The same process is applied for the other
channels.

4) Green guided manner:The demosaicked camera G
image is used as the guide for all channels. This manner
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TABLE IV
PERFORMANCE EVALUATION OF THE REFINEMENT ALGORITHMS.

AVERAGE PSNRAND MPSNROF ALL 40 SCENES ARE PRESENTED. THE

BOLD TYPEFACE REPRESENTS THE BESTMPSNRFOR EACHFAP.

FAP Guide R G B NIR MPSNR

Uniform
No refine 29.79 28.94 32.15 27.37 28.85
Channels 30.79 29.93 32.76 28.00 29.59

Green 30.69 29.93 32.51 28.11 29.56

Dense-NIR
No refine 29.10 32.46 30.80 27.38 29.16
Channels 30.47 33.56 31.99 28.40 30.22

Green 30.61 33.56 32.07 28.52 30.32

Sparse-NIR
No refine 28.51 32.81 30.33 25.82 28.38
Channels 29.64 33.44 31.42 26.50 29.19

Green 29.61 33.44 31.29 26.76 29.27

exploits the high sampling density of the G band in the dense-
NIR and the sparse-NIR FAPs.

5) Performance evaluation:Table IV presents the perfor-
mance evaluation of the refinement algorithms. The channel-
by-channel manner is slightly better for the uniform FAP.
Since the G band is not dominant in the the uniform FAP,
the green guided manner is not effective for this FAP. In
contrast, the green guided manner works better for the dense-
NIR and the sparse-NIR FAPs. These results demonstrate
that the high sampling density of the G band can effectively
be exploited for the refinement. As a whole, the refinement
process improves MPSNR more than 0.7 dB compared with
the case without the refinement (“No refine” in the table).
In the following experiments, we adopt the best-performed
refinement algorithms for each FAP.

F. Optical filter design

We here design an optical filter, which is placed in front of
the lens, to improve the RGB-NIR imaging quality. Specifi-
cally, we introduce a notch filter as shown in Fig. 10. As can be
seen in [21], it is implicitly known that this kind of notch filter
can improve the color fidelity of the acquired RGB image. In
this work, we explicitly optimize the cutoff wavelengths of the
notch filter.

1) Optimization strategy:The definition of the cutoff wave-
lengths of the simulated notch filter is illustrated in Fig. 10.
The curves at the cutoffs are simulated using the sigmoid func-
tions. In the filter optimization, the upper cutoff wavelength
is fixed to 800nm according to the assumed target NIR space
in subsection III-B (see Fig. 5(d)). Then, we find an optimal
notch filter by changing the lower cutoff wavelength.

2) Performance evaluation:Figure 11 shows the MPSNR
performance when changing the lower cutoff wavelength of the
notch filter. We can see that the cutoff wavelength of 660nm
consistently gives the best results for all FAPs. From Fig. 11, in
which the results at 800nm correspond to the cases without the
notch filter, we can confirm that the notch filter significantly
improve the MPSNR performance by optimizing the lower
cutoff wavelength.

G. Overall performance summary

In the above subsections, we have investigated the best-
performed algorithms for each imaging factor and each FAP.
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Fig. 11. MPSNR performance when changing the lower cutoff wavelength
of the notch filter. The cutoff at 660nm gives the best results for all FAPs.

TABLE VI
OPERATION MODES OF OUR PROTOTYPERGB-NIR CAMERA.

Mode h (pixels) v (pixels) bit fps

1 4096 3072 12 30
2 2816 2816 12 60
3 1984 1984 10 120
4 640 480 12 120
5 640 480 10 300

We here summarize the reported results and compare over-
all system performance of the considered FAPs. Table V
summarizes the step-by-step improvements of the MPSNR
performance. We can confirm that each designed step cer-
tainly improves the performance. We can also confirm that
our proposed dense-NIR FAP presents the best performance
when all steps are considered. Figure 12 shows the visual
comparison of the result images using the different FAPs. We
can confirm that the dense-NIR FAP can generate the images
more accurately than the common uniform FAP. Although
the MPSNR performance of the sparse-NIR FAP is lowest,
the sparse-NIR FAP offers the promising results in the visual
comparison.

IV. PROTOTYPEIMPLEMENTATION

A. Configuration

Figure 13 shows the configuration of our developed proto-
type RGB-NIR camera. We newly developed the RGB-NIR
sensor equipped with the RGB-NIR filter array using our
dense-NIR FAP. The sensor format is the advanced photo
system type-C (APS-C) format. The developed camera system
including a field-programmable gate array (FPGA) board,
which executes the RGB-NIR imaging pipeline, is placed
inside the body of the prototype. The customized notch filter
is placed in front of the lens, which modifies the spectral
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TABLE V
OVERALL MPSNRPERFORMANCE SUMMARY. THE VALUES IN PARENTHESES REPRESENT THE IMPROVEMENT BY EACH STEP.

FAP Demosaicked Color corrected Refined Notched

Uniform 17.68 28.85 (+11.17dB) 29.59 (+0.74dB) 33.46 (+3.87dB)
Our dense-NIR 17.69 29.16(+11.47dB) 30.32(+1.16dB) 33.88(+3.56dB)
Our sparse-NIR 17.70 28.38 (+10.68dB) 29.27 (+0.89dB) 33.33 (+4.06dB)

(a) Scene (b) Uniform (c) Dense-NIR (d) Sparse-NIR (e) Ground truths

Fig. 12. Visual comparison of the result images using (b) the uniform FAP, (c) the dense-NIR FAP, and (d) the sparse-NIR FAP. For each scene, the upper
figures show the RGB images, while the lower figures show the NIR images.
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Fig. 13. The configuration of our developed prototype RGB-NIR camera.

sensitivity as shown in the bottom right figure in Fig. 13. The
captured RGB and NIR images can be shown side by side
through the display in real time. Our prototype camera can
be operated in mobile environments using the attached battery
and in several operation modes as listed in Table VI. In the
highest resolution mode, our prototype camera can capture
4096×3072 RGB and NIR images at 30 frames per second
(fps). While in the highest fps mode, our prototype camera
can capture 640×480 RGB and NIR images at 300 fps.

B. Potential applications

We demonstrate several potential applications using our
prototype camera. Figure 14 shows the RGB and NIR hand
images captured by our prototype camera. We can see that
our prototype camera can simultaneously capture the standard
RGB image and the NIR image, in which the blood vessels
are more clearly visible. Figure 15 shows the real and the
fake leaves captured by our prototype camera. From the RGB
image, it is difficult to recognize which is the real one. In
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(a) RGB (b) NIR

Fig. 14. The captured RGB and NIR hand images. The blood vessels are
more clearly visible in the NIR image.

Fake Real

(a) RGB (b) NIR

Fig. 15. The real and the fake leaves captured by our prototype camera. The
real leaf is bright in the NIR image.

(a) RGB (b) NIR

Fig. 16. The IC card images captured by our prototype camera. The circuits
integrated inside the card are visible in the NIR image, while the numbers on
the card are visible in the RGB image.

contrast, we can easily distinguish the real and the fake leaves
from the NIR image, in which the real leaf is bright, while the
fake leaf is not bright. Figure 16 shows the integrated circuit
(IC) card images captured by our prototype camera. We can
see that the circuits, which are integrated inside the card, are
visible in the NIR image, while the numbers on the card are
visible in the RGB image.

We next demonstrate the potential application of our pro-
totype camera for simultaneous acquisition of RGB and NIR
florescence images [19], [49]. As a material that emits the
NIR fluorescence, we used indocyanine green (ICG), which
is used to visualize the location of blood vessels in medical
diagnostics. ICG absorbs light around 800nm and emits light
around 830nm. Therefore, we used narrow-band NIR light,
which has the relative spectral power distribution shown in
Fig. 17(a), to excite ICG. To simultaneously acquire the RGB
and the NIR fluorescence images, the customized notch filter,
which has the transmittance property shown in Fig. 17(b), was
placed in front of the lens to cutoff the excitation light and
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Fig. 17. The spectral properties of the excitation light and the notch filter
used for ICG measurements: (a) The relative spectral power distribution of
the excitation light, and (b) the transmittance of the notch filter to cutoff the
excitation light and pass the emission light.

(a) RGB (b) NIR (ICG fluorescence) (c) RGB + NIR (false color)

Fig. 18. Simultaneous acquisition of the RGB and the NIR fluorescent images
by our prototype camera: (a) The RGB image, (b) the NIR image, which
represents the ICG fluorescence, and (c) the visualized RGB+NIR image,
where the NIR image is superimposed on the RGB image using the false
color. See the text for detailed explanation.

pass the NIR fluorescence light.
In the experiments, we created an arm model and an organ

model as shown in Fig. 18. In the models, plastic tubes that
simulate blood vessels are located. To simulate blood flows,
ICG was circulated in the tubes. Figure 18(a) and 18(b) show
the acquired RGB and the NIR fluorescence images by our
prototype camera. We can see that our prototype camera can
simultaneously capture the RGB image and the NIR image
that represents the ICG fluorescence. Because there is no
misalignment between the images, we can effectively visualize
the location of the tubes (i.e., blood vessels) as shown in
Fig. 18(c), where the NIR image is superimposed on the RGB
image using the false color.

As demonstrated in the above examples, our prototype
RGB-NIR camera has potentials to be used in a wide variety
of applications in fields such as medical diagnosis, plant
monitoring, and industrial inspection.

V. CONCLUDING REMARKS

In this paper, we have proposed high-quality system designs
for single-sensor RGB-NIR imaging. We first have presented
a system evaluation framework that takes both the RGB-
NIR sensor characteristics and the RGB-NIR imaging pipeline
into account. Based on the evaluation framework, we then
have designed each imaging factor of the system and have
demonstrated that the RGB-NIR imaging quality can be much
improved by properly designing each factor. Through the
detailed experiments, we have proposed the best-performed
system design that is based on our proposed dense-NIR FAP.
We finally have presented the configuration of our developed
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prototype RGB-NIR camera, which was implemented based
on the best-performed system design, and have demonstrated
several potential applications using our prototype camera.

Our future work includes the incorporation of denoising and
chromatic aberration correction into the RGB-NIR imaging
pipeline. Since the noise affects the quality of demosaicking
and color correction, we will consider to incorporate an
existing raw data denoising method [50] and an effective color
correction pipeline with denoising [51]. Chromatic aberration
due to a large difference of refraction indexes between RGB
and NIR domains is another issue of the single-sensor RGB-
NIR imaging. For this issue, we will consider to incorporate
recent chromatic aberration correction methods [52]–[55] that
are designed for single-sensor RGB-NIR imaging. Smartphone
embedded applications [56]–[59] could be one of potential
future directions of our RGB-NIR imaging system.
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