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Abstract—In recent years, many applications using a set of red- NIR-cut filter
green-blue (RGB) and near-infrared (NIR) images, also called
an RGB-NIR image, have been proposed. However, RGB-NIR
imaging, i.e., simultaneous acquisition of RGB and NIR images, is
still a laborious task because existing acquisition systems typically g, cra
require two sensors or shots. In contrast, single-sensor RGB-
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NIR imaging using an RGB-NIR sensor, which is composed of a () RGB sensor (¢) RGB-NIR sensor
mosaic of RGB and NIR pixels, provides a practical and low-cost 4, 0

way of one-shot RGB-NIR image acquisition. In this paper, we s —R 3 —R
investigate high-quality system designs for single-sensor RGB- _ 30 -
NIR imaging. We first present a system evaluation framework z?* = —NR
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using a new hyperspectral image dataset we constructed. Differ-
ent from existing work, our framework takes both the RGB-NIR
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sensor characteristics and the RGB-NIR imaging pipeline into 5

account. Based on the evaluation framework, we then design o 0

each imaging factor that affects the RGB-NIR imaging quality 0 g omy O g o
and propose the best-performed system design. We finally present (b) RGB sensor sensitivity (d) RGB-NIR sensor sensitivity

the configuration of our developed prototype RGB-NIR camera,
which was implemented based on the best system design, an
demonstrate several potential applications using the prototype.

OFig. 1. Image sensors and their sensitivity: (a) RGB sensor, (b) RGB sensor
sensitivity, (c) RGB-NIR sensor, and (d) RGB-NIR sensor sensitivity.

Index Terms—Image sensor, imaging pipeline, filter array pat-
tern, demosaicking, color correction, RGB, near-infrared (NIR). two shots [9], [11], where one is required for RGB and the
other is required for NIR. The necessity of two sensors or shots
also makes the systems large, expensive, and complicated.
|. INTRODUCTION In current color digital cameras, single-senor RGB imaging

N recent years, many applications using a set of red- reeur?-ing the Bayer color filter array (CFA) [13] (see Fig. 1(a))
Y ' Y app 9 9reel el established [14]. An image sensor equipped with the

blue (RGB) and near-infrared (NIR) images, also calle CEA d | el val RGB val
an RGB-NIR image, have been proposed. Different spectra"f‘yer records only one pixel value among values at

properties between RGB and NIR images offer useful infoeach pixel. The other two missing pixel values are estimated

mation for various applications such as image restoration [fom the recorded mosaic data of RGB values by an inter-
image enhancement [2]{4], image fusion [5], [6], dehazi lation process called demosaicking (or demosaicing) [15],

[7], [8], scene categorization [9], face recognition [10], shado 6]. The combination of the Bayer CFA and the demosaicking

detection [11], and heart rate measurement [12]. Howevgrrocess enables one-shot acquisition of the RGB image using

: I ) only a single image sensor, and hence reduces the size and
simultaneous acquisition of RGB and NIR images, also termeg y 9 9
cost of the camera.

:fii-:iltliinlrzagtlgr%slst Stiltl:laﬁ lE:EOL'ﬁzst\}visisne:;l;sa]ex[;t ”;? The one-shot, compact and low-cost properties of the single-
d Y ypically req ' sensor RGB imaging are also desirable for RGB-NIR imaging.
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the RGB-NIR imaging quality is affected by both the RGB u r u
NIR sensor characteristics, such as a filter array pattern (F ||
and spectral sensitivity, and the RGB-NIR imaging pipelin:
converting the mosaic data to the output RGB and NIR imag I I
However, existing research on single-sensor RGB-NIR ima - u n
. . . . . RGB of the RGB sensor(b) RGB of the RGB-NIR (c) sRGB
ing mainly focuses on either sensor characterization [17], [1 in Fig. 1(b) sensor in Fig. 1(d)
or image reconstruction methodology [19]-{22]. In additionsig > simulated color chart images: (2) RGB of the RGB sensor, (b) RGB
to the best of our knowledge, there is no existing work that the RGB-NIR sensor, and (c) SRGB. Daylight is used for simulating (a)
systematically evaluates different sensor and imaging pipeli (b). The image (b) is more reddish and less color saturated than the image
. . . . . . a) due to the spectral crosstalks of the RGB-NIR sensor.

designs for high-quality single-sensor RGB-NIR imaging.

In this paper, our purpose is to propose high-quality system
designs for single-sensor RGB-NIR imaging by taking both thge finally validate the realizability of the best system design
sensor characteristics and the imaging pipeline into accougy. our developed prototype RGB-NIR camera. Contributions
Specifically, we investigate the following imaging factors thasf this paper are summarized as follows.

affect the RGB-NIR imaging q“"?‘"‘Y- . « We construct a system evaluation framework for single-
RGB-NIR FAPs and demosaicking algorithmsare core sensor RGB-NIR imaging. Our evaluation framework

factors of single-sensor RGB-NIR imaging systems. Although ;)05 poth the RGB-NIR sensor characteristics and the
the 2x2 RGB-NIR FAP in Fig. 1(c) is commonly adopted RGB-NIR imaging pipeline into account. A part of the

(ReGgB ,[\} I??]_I[ZZ :g,) ' tr:ereha_lre fewkcomparative studiesggcgffszgnt dataset images and sample codes to reproduce the frame-
) s. In this work, we propose two - work is publicly available at our webstte

FAPs andl compare theg1 with .thlf, commOﬂZE?B-NIR « Based on the evaluation framework, we propose high-
FAP. We also propose a demosaicking framework for our FAPs quality system designs for single-sensor RGB-NIR imag-

using state-of-the-e_lrt resi.dual int_erpolation [25]: ing. We demonstrate that our proposed RGB-NIR FAP
Color correction is particularly important for single-sensor called the “dense-NIR FAP” provides the best perfor-

RGB-NIR imaging._As_ sr_lown in Fig. 1(d)! typical RGB filters mance among compared three RGB-NIR FAPs.

have spectral sensitivity in the NIR domain. These phenomena. We validate the realizability of the best system design,
are refereed to as spectrgl cr(_)sstalks [21], [22]. For current \ vihis based on our dense-NIR FAP, by our developed
RGB sensors, an NIR-cut filter is placed in front of the sensor prototype RGB-NIR camera that operates in real time

(see Fll?(. ]}(a)) Ito avoid unde;watﬂe effectshOf,\tlrs speﬁtral We demonstrate several potential applications using the
crosstalks for color representation. However, the -cut filter prototype camera.

needs to be removed for single-sensor RGB-NIR imaging,_, . . .

resulting in severe color shifts of the acquired RGB imag This Paper 1S an extended version of our conference papers

Figure 2 shows examples of the color shift for the col 9]_[31.]’ in which we have proposed two RGB-NIR FAP.S’

chart. The RGB image of the RGB-NIR sensor in Fig. 2(H emosalcklng frameworks for the FAPs, and acol_or correction
inement process for RGB-NIR sensors. In this paper, we

is more reddish and less color saturated than that of the R bi I th | ith dedicated di .
sensor in Fig. 2(a). The role of color correction is to corre§PMPINE all these proposals, with more dedicated discussion

such color shifts and reproduce the image with desired co%?d expt:rm:er;ttshfor h|gr1-q|uallty iys_:en(;n d<_35|gr:ls\,l, anld present?
representation, typically in the SRGB color space as shown f content ot he spectral sensilivity design. We also presen

Fig. 2(c). In this work, we evaluate standard least-squares coldf configuration of our newly develp ped prototype RGB'.NIR
correction algorithms [26]-[28] for single-sensor RGB-N|EFamera and several applications using the prototype, while the

imaging. We also propose an effective refinement processcf?)nf(':'rence papers only contain simulation results.

suppress demosaicking error amplification by color correction.The rest of this paper is organized as follows. Section I

Spectral sensitivity is another important factor that affectsb”eﬂy reviews related work. Section Il presents our system

the color fidelity of the acquired RGB image and the Spegyaluation framework and proposed high-quality system de-
gns. Section IV presents the configuration and the applica-

tral property of the acquired NIR image. However, spectr§| ,
sensitivity of manufacturable RGB-NIR sensors is physicalgns of our developed prototype RGB-NIR camera. Section V
and technically limited. One feasible option to customize th ncludes the paper and presents future work.
spectral sensitivity is to place an optical filter in front of
the sensor or lens. In this work, we maximize the RGB-NIR Il. RELATED WORK
imaging quality by investigating an optimal optical filter. A, RGB-NIR FAPs and demosaicking algorithms

To design a high-quality single-sensor RGB-NIR imaging

system, it is important to evaluate the above-mentioned faCtﬂéB-NIR FAP of Fig. 3(b), where half of the G filters in the
considering the overall system performance. Therefore, in t Eyer FAP (see Fig. 3(a))' are replaced with the NIR filters.

paper, we first construct a system evaluation framework. i other words, all spectral bands are uniformly sampled. In

the evaluation, we use our new hyperspectral image data\%tat follows, we refer to this FAP as the uniform FAP. A few

that covers the spectral range from 420n.m to 1000nm. We ﬂ.“;‘Igratures have presented a demosaicking algorithm for the
propose the best-performed system design by properly design-

ing each imaging factor based on the evaluation framework!http://iwww.ok.sc.e.titech.ac.jp/res/MSI/SENJ-RGB-NIR.html

Existing work (e.g., [19]-[24]) commonly adopts thex2
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(a) Bayer  (b) Uniform

(d) Nedelcu et al.

typically the XYZ or the sRGB color space [36], [37]. For
conventional RGB sensors, least-squares algorithms, such as
linear color correction (LCC) [26], polynomial color correc-
tion (PCC) [27], and root-polynomial color correction (RPCC)
[28], are the most widely used algorithms. The least-squares
algorithms can be extended for the RGB-NIR sensors [19],
[38]. There are several algorithms that are designed for the
RGB-NIR sensors, such as based on spectral decomposition
[39], sparse representation [40], and neural networks [41],
[42]. Tang et al. and Hu et al. jointly solved the demosaicking

Fig. 3. Different FAPs: (a) The Bayer FAP [13], (b) the uniform FAP [19]- ; fmi i _
[24], (¢) the Spooren et al. FAP [17], (d) the Nedelcu et al. FAP [32], (¢) OLj':}nd the color correction problems as the optimization frame

(c) Spooren et al.

(e) Our dense-NIR (f) Our sparse-NIR

dense-NIR FAP, and (f) our sparse-NIR FAP. vvprk [21], [22]. I_—Iowever, these algorithms generally require

higher computational cost and memory than the least-squares
TABLE | algorithms.
SAMPLING DENSITY OF EACH BAND IN DIFFERENTFAPS. R L.

In this work, we evaluate hardware-efficient least-squares

FAP Size R G B NR algorithms, i.e., LCC, PCC, and RPCC, for our system design.
Bayer 2x2 U4 12 U4 - We also propose an effective refinement process to suppress

Uniform 2x2 U4 14 1A 1A demosaicking error amplification, which is a new challenge of

Our dense-NIR %4 1/8 1/2 1/8 1/4

Our sparse-NIR 1010 1/5 12 15 1/10 color correction for the RGB-NIR sensors.

Spooren [17] &4 /8 14 18 12
Nedelcu [32] %6 1/6 1/6 1/6 12 o
Lu [33] 4x4 Use specialized filters C. Spectral sensitivity

Sadeghipoor [34] %4 Use specialized filters

Some research groups have analyzed manufacturable spec-
tral sensitivity for the RGB-NIR sensors, based on their own
technology such as the gated CMOS sensor [17], the pixel-
uniform FAP in detail [20]-[22]. Martinello et al. proposed aneye| integration of the NIR-cut filter [18], the transverse field
interpolation-based algorithm that can effectively incorporaigstector [43], the monolithically integrating interference filters
an existing high-quality Bayer demosaicking algorithm fofs4] and the thin film deposition and etching [45].
the RGB image reconstruction [20]. Tang et al. modeled the|n this work, we developed a prototype RGB-NIR camera
demosaicking process as an optimization problem and solNgglh the spectral sensitivity shown in Fig 1(d), which was
it with image regularization functions [21]. Hu et al. recentlynanyfacturable by our technology. Since the spectral sensi-
improved the Tang et al. algorithm using convolutional sparggity of manufacturable sensors is physically and technically
cording to solve the optimization problem [22]. Although th§mited, we introduce an optical notch filter in front of the
optimization-based approaches [21], [22] offer higher perfogsns to improve the RGB-NIR imaging quality. Although the
mance, they require higher computational cost (e.g., more thagsgration of the notch filter is implicitly performed in some

8 minutes for a 388336 pixel image, as reported in [22]). existing work (e.g., [21]), we explicitly optimize the cut-off
As other RGB-NIR FAPs, Spooren et al. proposed>ad4 wavelengths of the notch filter.

FAP of Fig. 3(c) [17] and Nedelcu et al. proposed>a62FAP

of Fig. 3(d) [32], respectively. In these FAPs, half of the pixels
are the NIR pixels, and thus the NIR imaging is the main
target. The demosaicking algorithms for these FAPs have mat Hyperspectral image dataset

described in detail in [17], [32]. Lu et al. and Sadeghipoor et .al' We start with the description of our constructed hyperspec-

proposed several frameworks that jointly solve the FAP des'%l image dataset, which was used for our system evaluation.

and the demosaicking problems [33]35]. Although the%e used a monochrome camera and two VariSpec tunable

frameworks theoretically work well, manufacturing of they,. o [46], VIS for 420-650nm and SNIR for 650-1000nm
resultant sensors are technically difficult due to the necessy capturi'ng each hyperspectral image. The captured hyp'er-

of Ithcteh_spemalllzed spdect_ral Ilrllters. ducibility of the stat fspectral image consists of a set of narrow-band images from
n this work, considering the reproducibiiity ot the state-01z54, 1, 145 1000nm at every 10nm intervals. The hyperspectral

Fhe—art demqsaicking algqrithm and the feasibility Of. hardwiié’nage was then converted into a form of spectral reflectance

!mplementtatlond, we co\r;;ldelr the most cct)mmlgnGSnll\I?émF;P y a calibration process using a colorchecker whose spectral

In our system design. We alSo propose two ) . raflectance property is known. The dataset contains 40 scenes
as shown in Fig. 3(e) and 3(f), and compare them with tr\‘lﬁth cropped 512512 pixels, as shown in Fig. 4
uniform FAP. Table | summarizes the sampling density of eac '

band in the above-mentioned FAPs.

Ill. PROPOSEDHIGH-QUALITY SYSTEM DESIGNS

B. System evaluation framework

B. Color correction algorithms Figure 5 shows the overview of our system evaluation
Color correction is a process that transforms a camefsamework. The input of the framework is hyperspectral re-
specific color space into a standard or a desired color spaitectance data as explained above. As the illumination source,
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Fig. 5. Overview of our system evaluation framework using the hyperspectral image dataset.

using the target NIR function.

The upper part of Fig. 5 shows the simulation flow of the
single-sensor RGB-NIR imaging system. Firstly, full camera
RGB and NIR images are generated using the spectral sensi-
tivity functions of the RGB-NIR sensor (see Fig. 5(b)). As an
option, the spectral sensitivity can be modified using an optical
filter, which is placed in front of the lens. The full camera
RGB and NIR images are then sub-sampled according to the
RGB-NIR FAP of the sensor. The sub-sampled R, G, B, and
NIR images are then interpolated by the demosaicking process.
The demosaicked camera RGB and NIR images with the
spectral crosstalks are finally converted to the output images
L o in the target SRGB and NIR spaces by the color correction

Fig. 4. Forty scenes in our hyperspectral image dataset. and refinement processes. In the performance evaluation, the
output RGB and NIR images generated by the system are
compared with the ground-truth sSRGB and target NIR images

we assume daylight, which has broad spectral power distrifdee the red dashed box in Fig. 5). We evaluate peak signal-
tion in both visible and NIR domains. The spectral distributiotb-noise ratio (PSNR) of each band and multispectral PSNR

of daylight was measured using a spectrometer (see Fig. 5(@IPSNR), which is calculated as below.
The lower part of Fig. 5 shows the generation process of 9552

ground-truth images. For the RGB imaging, we set the sSRGB MPSNR = 10 - log —— S . >
color space as our target color space. To generate the ground- T 2aim1 Zj=1 1235 — ijl3
truth sSRGB image, the hyperspectral reflectance data is firstere A/ is the total number of pixelsi;; is the estimated
converted to the XYZ image using the XYZ color matchingixel value at thej-th pixel in the i-th band, where; =
functions (red, green, and blue lines in Fig. 5(d)). Then, thegk, G, B, NIR}, and z;; is the corresponding ground-truth
ground-truth sRGB image is generated by the XYZ-to-sRGpixel value. MPSNR evaluates the overall imaging quality of
transformation matrix calculated using the white point of thihe RGB-NIR imaging system.

daylight. For the NIR imaging, we also assume a target NIR In the following subsections, we propose high-quality sys-
space without spectral crosstalks between the visible and teen designs by considering both the RGB-NIR characteristics
NIR domains. Although the target NIR spectral range depenftke orange dashed box in Fig. 5) and the single-sensor RGB-
on applications, without loss of generality, we set the spectfdIR imaging pipeline (the purple dashed box in Fig. 5).
range from 800nm to 1000nm as our target NIR space. TBeecifically, we design RGB-NIR FAPs and demosaicking
target NIR sensitivity function is shown as the gray line imlgorithms in subsection IlI-C, evaluate least-squares color
Fig. 5(d). The relative sensitivity of the target NIR function igorrection algorithms in subsection 1lI-D, propose an effective
normalized to have the same area with the Y functions, i.eglor correction refinement algorithm in subsection IlI-E, and
the green line in Fig. 5(d). The ground-truth target NIR imagetroduce an optimal notch filter, as shown in Fig. 5(c), in
is directly generated from the hyperspectral reflectance dat#bsection IlI-F.

1)
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Fig. 6. The demosaicking framework of [20] for the uniform FAP. Fig. 7. Our proposed demosaicking framework for the dense-NIR FAP. The
same framework can be applied to the sparse-NIR FAP.

C. RGB-NIR FAPs and demosaicking algorithms TABLE Il

1) Considered FAPs:We Consider the common uniform PERFORMANCE EVALUATION OF THE DEMOSAICKING ALGORITHMS
. AVERAGE PSNRAND MPSNROF ALL 40 SCENES ARE PRESENTEDTHE

FAP and two proposed FAPs. Figure 3(c) and 3(d) show oUF' 5o, b 1vperacE REPRESENTS THE BESMPSNRFOR EACHFAP.
proposed FAPs. The feature of our FAPs is that the G filters
are sampled in the same density as that of the Bayer FAP. FAP NIR Rec.| R G B NIR | MPSNR
Motivated by state-of-the-art Bayer demosaicking algorithms, ;.itorm Indep. i 3915 42.86 4508 3614 i 39.44
we later propose a demosaicking framework that effectively Guided 4200 ] 4166
exploits the high sampling density of the G band. The tWOpgnse-nik N98P- | 3862  46.03  44.82 36-14i 39.46
FAPs are discriminated by the sampling density of the NIR Guided as4r] 4217
filters. The FAP of Fig. 3(c) samples the NIR filters in the sparse-NIR C';”ucissd 4020 4768 47.05 Zg-ggi 36.18
density of 1/4, while the FAP of Fig. 3(d) samples them in :
the density of 1/10. In what follows, we refer to the first FAP
as the dense-NIR FAP, and the second FAP as the sparse-
NIR FAP, respectively. We next describe the demosaickirghd the B bands by exploiting the interpolated G image as the
frameworks for the considered FAPs. guide for RI. The above-mentioned two approaches are taken

2) Demosaicking framework for the uniform FARSince for the NIR image reconstruction. The same demosaicking
our goal is to realize a real-time system, we adopt the comfgamework can be applied to the sparse-NIR FAP, which also
tationally efficient interpolation-based algorithm by Martinelllhas the high sampling density of the G band.
et al. [20] for the uniform FAP. Figure 6 shows the demo- 4) Performance evaluationTable Il summarizes the de-
saicking framework of [20]. The algorithm first interpolatesnosaicking performance. Here, to evaluate pure demosaicking
the sub-sampled NIR by bicubic interpolation. Then, thgerformance regardless of color correction, the full “camera”
algorithm estimates the missing G pixel values at the NIRGB and NIR images without mosaicking (see Fig. 5) were
pixels by interpolating the GNIR components. This processused as the ground truths for calculating PSNR and MPSNR.
is called green pixel replacement in [20]. As the consequenthie second column in Table Il represents the used approach
of the green pixel replacement, the Bayer mosaic imagefis the NIR image reconstruction (NIR Recon.). The approach
acquired. Therefore, an existing Bayer demosaicking algorittfidep.” represents the independent interpolation, while the
can be applied to reconstruct the RGB image. We apply th@proach “Guided’ represents the guided interpolation.
residual interpolation (RI)-based algorithm [25], which is one As shown in Table II, for the RGB image reconstruction,
of the state-of-the-arts. For the NIR image reconstructiothe sparse-NIR FAP offers the best performance. This is
we consider two approaches. The first one is independeghsonable because the sparse-NIR FAP assigns more pixels
interpolation that directly uses the interpolated NIR image iy the RGB filters than the other two FAPs. For the NIR
bicubic interpolation as the output. The second one is guidgflage reconstruction, the guided interpolation works much
interpolation that uses the interpolated G image as the guigiétter than the independent interpolation. This is because, for
for interpolating the sub-sampled NIR, assuming the specttahny of objects in our dataset, the G and the NIR images
correlation between the G and the NIR bands. Although ondhare the edge and texture locations, even if there are intensity
the first approach is taken in [20], we also consider the secogliferences, due to the spectral sensitivity overlaps between
approach because it is known that the visible and the NiRe G and the NIR bands in our RGB-NIR sensor. In what
images generally have correlation to some extent. We appiylows, we adopt the guided interpolation for the NIR image
the RI [25] for the guided interpolation in the second approacksconstruction.

3) Demosaicking framework for the dense-NIR and the
sparse-NIR FAPs:Figure 7 shows the demosaicking frame- . .
work of our proposed algorithm for the dense-NIR FAP, ThE: Color correction algorithms
algorithm first interpolates the most dense G band by the RI-We next evaluate standard least-squares color correction
based algorithm [47]. The algorithm then interpolates the &gorithms [26]—[28] for single-sensor RGB-NIR imaging.
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— — " e — 3 ]
/\ ‘.‘?‘:'_E::\;_ﬂ Ygl"“:
PERFORMANCE EVALUATION OF THE COLOR CORRECTION ALGORITHMS ] | i
AVERAGE PSNRAND MPSNROF ALL 40 SCENES ARE PRESENTEDTHE

BOLD TYPEFACE REPRESENTS THE BESMPSNRFOR EACHFAP. - .

R
— —

FAP Model \ R G B NIR \ MPSNR
No CC | 20.11 19.66 20.58 14.70 17.68 (a) Demosaicked (b) Color-corrected () Proposed (d) Ground-truth
Uniform LCC 29.94 29.07 31.92 26.01 28.47 camera RGB result by RPCC refinement result sRGB
I;PCC?C gg% gggg 3;?2 g?; gggg Fig. 8. An example of the demosaicking error amplification for the uniform
: : : : : FAP and the effect of our proposed refinement algorithm: (a) The demosaicked
No CC | 20.12 19.72 2058 14.71 17.69 camera RGB image, (b) the color-corrected image by RPCC, (c) the result
D NIR LCC 2000 3280 3056 26.09 28.74 image after the refinement, and (d) the ground-truth SRGB image.
ense- PCC | 2858 32.38 30.74 26.83 28.93
RPCC | 29.10 3246 30.80 27.38 29.16
.| Guid
No CC | 20.16 19.73 20.60 1473 17.70 | tontion
LCC 28.63 33.01 29.82 24.4% 27.79
Sparse-NIR - poc | 2817 3263 3003 2517 28.04
RPCC | 28,51 32.81 30.33 25.82 28.38 r
R Color .| Guided
"] correction 7| filtering

Demosaicked
camera RGB-NIR

Output

1) General formulation: The least-squares algorithms for RGB-NIR

the RGB-NIR sensors can generally be formulated as

q = Mp, (2

where q = [r',¢,t',n']T represents the output color-
corrected RGB and NIR valuep, € RY is an input vector
formed by camera RGB values, abd € R**¥ is the color
correction matrix. The elements and the dimension of the inpedf
vectorp depend on the used model, which will be explained
later. The matrixM is typically calculated using training color E. Color correction refinement algorithms

Fig. 9. The flow of our proposed color correction refinement algorithm.

is performed. In terms of the MPSNR performance, we can
confirm that the state-of-the-art RPCC consistently offers the
best performance for all FAPs. Therefore, In the following

periments, we adopt RPCC.

patches by least-squares regression as
M = argmin || Q; — MP¢[, ®3)

We next address a new challenge of color correction for the
RGB-NIR sensors, i.e., demosaicking error amplification, and
propose an effective refinement process to suppress the error

where|| - ||% is the Frobenius normQ; € R**¥ s the matrix amplification.
containing the target vectors & training patches, where the 1) Problem statementOne issue of color correction for the
target SRGB and NIR spaces were defined in subsection III-BGB-NIR sensors is the amplification of demosaicking errors.
P, € RV*X s the matrix containing the corresponding inpufigure 8 shows an example of the error amplification for the
vectors formed by the camera RGB values of the patches.uniform FAP, where Fig. 8(a) is the demosaicked camera RGB
our evaluation, we used the 96 patches of the X-rite SG colgrage and Fig. 8(b) is the color-corrected image by RPCC. Itis
chart, as shown in Fig. 2, for training the color correctioapparent that the demosaicking errors are severely amplified
matrix. We next explain the used LCC [26], PCC, [27] anih the color-corrected image. In the following, we propose
RPCC [28] models. an effective color correction refinement algorithm that can
2) LCC model:LCC only uses the first-order linear termssuppress the error amplification, as shown in Fig. 8(c).
The input camera intensity vector of LCC is formedms. = 2) Algorithm flow: Figure 9 shows the flow of our pro-
[r,g,b,n]T, wherer, g, b, andn represent the camera R, Gposed refinement algorithm. Our algorithm is simple and only
B, and NIR values, respectively. adds the guided filtering process [48] to the standard color
3) PCC model:PCC exploits high-order terms, in additioncorrection process. The guided filtering is a powerful edge-
to the linear terms. In this work, we consider the second-ordetteserving filtering using a guide image that has correlation
PCC. The input vector of the second-order PCC is formed with the input filtered image. Our idea is that the amplified er-
Ppee = [1,9,b,m,7g,7b, 11, gb, gn, bn, 72, g, b*, n?]T. rors “after” color correction can be filtered out with the guided
4) RPCC model:RPCC modifies PCC by taking'” root filtering by using the image “before” the color correction, i.e.,
of each k-degree term to improve the robustness in intensitgfore the amplification as the guide. To effectively select the
changes. In this work, we consider the second-order RPQfiide channel, we propose two manners as below.
The input vector of the second-order RPCC is formed as3) Channel-by-channel guided mannerhe guide image
p = [r,9,b,n, /T, Vrb, /T, \/gb, /gn, Vbn|T. We note is selected as channel-by-channel. For example, the color-
that the dimension of the RPCC is lower than PCC becausarrected R image is filtered by using the demosaicked camera
V72, /g2, Vb2, V2T = [r,g,b,n]". R image as the guide. The same process is applied for the other
5) Performance evaluation:Table Ill shows the perfor- channels.
mance comparison of the color correction algorithms. In the4) Green guided mannerThe demosaicked camera G
table, “No CC” represents the case that no color correctiimage is used as the guide for all channels. This manner
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TABLE IV Lover cutoff Upper cutoff
PERFORMANCE EVALUATION OF THE REFINEMENT ALGORITHMS ey 1 e
AVERAGE PSNRAND MPSNROF ALL 40 SCENES ARE PRESENTEDTHE
BOLD TYPEFACE REPRESENTS THE BESMPSNRFOR EACHFAP.

Transmittance [%]

FAP Guide \ R G B NIR \ MPSNR
No refine | 29.79 28.94 32.15 27.37 28.85 ’ [
Uniform Channels| 30.79 29.93 32.76 28.00 29.59
Green 30.69 29.93 3251 2811 29.56

Dense-NIR Channels| 30.47 3356 31.99 28.4
Green 30.61 3356 32.07 285

No refine | 28.51 32.81 30.33 25.8§ 28.38

No refine | 29.10 32.46 30.80 27.3§ 29.16

Sparse-NIR Channels| 29.64 33.44 31.42 26.5

Green | 20.61 33.44 3129 26.76 29.27 . Untorm

~—®—Dense-NIR

—e—Sparse-NIR

exploits the high sampling density of the G band in the dense- 2 N
NIR and the sparse-NIR FAPs. *
5) Performance evaluationTable IV presents the perfor- 3
mance evaluation of the refinement algorithms. The channel- »
by-channel manner is slightly better for the uniform FAP. Lower cutoff wavelength ]

Since the G band is not dominant in the the uniform FARjg. 11. MPSNR performance when changing the lower cutoff wavelength
the green guided manner is not effective for this FAP. [¢f the notch filter. The cutoff at 660nm gives the best results for all FAPs.
contrast, the green guided manner works better for the dense-

NIR and the sparse-NIR FAPs. These results demonstrate TABLE VI
. . . . OPERATION MODES OF OUR PROTOTYPRGB-NIR CAMERA.

that the high sampling density of the G band can effectively
be exploited for the refinement. As a whole, the refinement Mode | h (pixels) v (pixels) bit fps
process improves MPSNR more than 0.7 dB compared with 1 4096 3072 12 30
the case without the refinement (“No refine” in the table). 2 2816 2816 12 60

; ; 3 1984 1984 10 120
In _the following .expenments, we adopt the best-performed 1 640 480 12 120
refinement algorithms for each FAP. 5 640 480 10 300

F. Optical filter design

th(\aNI?a:ser?odiens];?rgvaen tﬁgt';%Igl_tszhvzmggiﬁgplc?jaeﬁ;n ;g)géi&];\le here summarize the reported res_ults and compare over-
cally, we’introduceanotch filter as shown in Fig. 10 As can baeII systgm performance  of th(_e considered FAPs. Table V
seen in [21], it is implicitly known that this kind of notch filter 2T 112112€S the step-by-step improvements of the MPSNR
can imprové the color fidelity of the acquired RGB image. | erformance. We can confirm that each designed step cer-
this work, we explicitly optimize the cutoff wavelengths of t.healnly improves the performance. We can also confirm that

notch filtér. our proposed dense-NIR FAP presents the best performance

T i — when all steps are considered. Figure 12 shows the visual
1) Optimization strategyThe definition of the cutoff wave- omparison of the result images using the different FAPs. We
lengths of the simulated notch filter is illustrated in Fig. 1g:omp g 9 X

. . . ] can confirm that the dense-NIR FAP can generate the images
The curves at the cutoffs are simulated using the sigmoid func- .
more accurately than the common uniform FAP. Although

tions. In the filter optimization, the upper cutoff wavelengt .
is fixed to 800nm according to the assumed target NIR spa?he MPSNR performance of the sparse-NIR FAP is lowest,

e . X .
in subsection IlI-B (see Fig. 5(d)). Then, we find an optimaﬁe spa_rse-NIR FAP offers the promising results in the visual
notch filter by changing the lower cutoff wavelength. comparison.

2) Performance evaluationFigure 11 shows the MPSNR
performance when changing the lower cutoff wavelength of the IV. PROTOTYPEIMPLEMENTATION

notch filter. We can see that the cutoff wavelength of 660nf Configuration

consistently gives the best results for all FAPs. From Fig. 11, inFigure 13 shows the configuration of our developed proto-
which the results at 800nm correspond to the cases without fige RGB-NIR camera. We newly developed the RGB-NIR

notch filter, we can confirm that the notch filter significantlgensor equipped with the RGB-NIR filter array using our

improve the MPSNR performance by optimizing the loweense-NIR FAP. The sensor format is the advanced photo

cutoff wavelength. system type-C (APS-C) format. The developed camera system
including a field-programmable gate array (FPGA) board,
G. Overall performance summary which executes the RGB-NIR imaging pipeline, is placed

In the above subsections, we have investigated the bdsstide the body of the prototype. The customized notch filter
performed algorithms for each imaging factor and each FAB. placed in front of the lens, which modifies the spectral



IEEE SENSORS JOURNAL, VOL.XX, NO.XX, XXXXX 20XX 8

TABLE V
OVERALL MPSNRPERFORMANCE SUMMARY THE VALUES IN PARENTHESES REPRESENT THE IMPROVEMENT BY EACH STEP
FAP \ Demosaicked Color corrected Refined Notched
Uniform 17.68 28.85 (+11.17dB)  29.59 (+0.74dB)  33.46 (+3.87dB)
Our dense-NIR 17.69 29.16(+11.47dB) 30.32(+1.16dB) 33.88(+3.56dB)
Our sparse-NIR 17.70 28.38 (+10.68dB)  29.27 (+0.89dB)  33.33 (+4.06dB)

(a) Scene (b) Uniform (c) Dense-NIR (d) Sparse-NIR (e) Ground truths

Fig. 12. Visual comparison of the result images using (b) the uniform FAP, (c) the dense-NIR FAP, and (d) the sparse-NIR FAP. For each scene, the upper
figures show the RGB images, while the lower figures show the NIR images.

RGB-NIR sensor : L .

(4096 x 3072 pixels, APS-C size) Microscopic image Dense-NIR FAP Density

\
Battery

35 —R 35

g —R

| 30 —G 30 —G

; s —B g2 —B

2 0 —NIR | Z 5 ——NIR

= Notch filter 215 21
z 10 10
> 5 5
0 0

Relative sensitivity
Relative sensitivity

400 500 600 700 800 900 1000 400 500 600 700 800 900 1000
Overview of our prototype camera Wavelength [nm] Wavelength [nm]
Spectral sensitivity Spectral sensitivity with the notch filter

Fig. 13. The configuration of our developed prototype RGB-NIR camera.

sensitivity as shown in the bottom right figure in Fig. 13. Th8. Potential applications

captured RGB and NIR images can be shown side by sidye gemonstrate several potential applications using our
through the display in real time. Our prototype camera cototype camera. Figure 14 shows the RGB and NIR hand
be operated in mobile environments using the attached battﬁ%geS captured by our prototype camera. We can see that
and in several operation modes as listed in Table V1. In the, nrototype camera can simultaneously capture the standard
highest resolution mode, our prototype camera can Capt¥§esg jmage and the NIR image, in which the blood vessels
4096x3072 RGB and NIR images at 30 frames per secongle more clearly visible. Figure 15 shows the real and the

(fps). While in the highest fps mode, our prototype cameggye |eaves captured by our prototype camera. From the RGB
can capture 640480 RGB and NIR images at 300 fps.  jmaqge it is difficult to recognize which is the real one. In
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Relative spectral power
s s s o
S 282 -
2
18
Transmittance [%]
88858338

Wavelength [nm] Wavelength [nm]

(a) Excitation light for ICG (b) Notch filter for ICG

Fig. 17. The spectral properties of the excitation light and the notch filter
(a) RGB (b) NIR used for ICG measurements: (a) The relative spectral power distribution of

the excitation light, and (b) the transmittance of the notch filter to cutoff the
Fig. 14. The captured RGB and NIR hand images. The blood vessels gsgitation light and pass the emission light.

more clearly visible in the NIR image.
- k

(a) RGB (b) NIR (ICG fluorescence) (c) RGB + NIR (false color)

Fig. 18. Simultaneous acquisition of the RGB and the NIR fluorescent images
Fig. 15. The real and the fake leaves captured by our prototype camera. bigeour prototype camera: (a) The RGB image, (b) the NIR image, which
real leaf is bright in the NIR image. represents the ICG fluorescence, and (c) the visualized RGB+NIR image,
where the NIR image is superimposed on the RGB image using the false
color. See the text for detailed explanation.

GretagMacbeth™ Color|

Fake Real

(a) RGB (b) NIR

pass the NIR fluorescence light.

In the experiments, we created an arm model and an organ
model as shown in Fig. 18. In the models, plastic tubes that
simulate blood vessels are located. To simulate blood flows,
ICG was circulated in the tubes. Figure 18(a) and 18(b) show
: the acquired RGB and the NIR fluorescence images by our
(@) RGB (b) NIR prototype camera. We can see that our prototype camera can

Fig. 16. The IC card images captured by our prototype camera. The circ&lignu“aneous'y capture the RGB image and the NIR im_age
integrated inside the card are visible in the NIR image, while the numbers that represents the ICG fluorescence. Because there is no

the card are visible in the RGB image. misalignment between the images, we can effectively visualize
the location of the tubes (i.e., blood vessels) as shown in

contrast, we can easily distinguish the real and the fake Iea\'/:é%' 18(C).’ where the NIR image is superimposed on the RGB
from the NIR image, in which the real leaf is bright, while théngedusmg the fa:jse_ colr?r. b |
fake leaf is not bright. Figure 16 shows the integrated circu& ;_NleRmonstrateh In_the a love sxamp(;e;, our_dprotot_ype
(IC) card images captured by our prototype camera. We ca] '~ camera has potentials to be usedn a wide variety
see that the circuits, which are integrated inside the card, gea_ppl!catlons n f|eId_s .SUCh as medical diagnosis, plant
visible in the NIR image, while the numbers on the card al[gonltorlng, and industrial inspection.
visible in the RGB image.

We next demonstrate the potential application of our pro- V. CONCLUDING REMARKS
totype camera for simultaneous acquisition of RGB and NIR In this paper, we have proposed high-quality system designs
florescence images [19], [49]. As a material that emits tHer single-sensor RGB-NIR imaging. We first have presented
NIR fluorescence, we used indocyanine green (ICG), whieh system evaluation framework that takes both the RGB-
is used to visualize the location of blood vessels in medicHIR sensor characteristics and the RGB-NIR imaging pipeline
diagnostics. ICG absorbs light around 800nm and emits liginto account. Based on the evaluation framework, we then
around 830nm. Therefore, we used narrow-band NIR lightave designed each imaging factor of the system and have
which has the relative spectral power distribution shown ihemonstrated that the RGB-NIR imaging quality can be much
Fig. 17(a), to excite ICG. To simultaneously acquire the RGitnproved by properly designing each factor. Through the
and the NIR fluorescence images, the customized notch filtdetailed experiments, we have proposed the best-performed
which has the transmittance property shown in Fig. 17(b), wagstem design that is based on our proposed dense-NIR FAP.
placed in front of the lens to cutoff the excitation light andVe finally have presented the configuration of our developed

.l || | | | "1

=

RN PSS
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prototype RGB-NIR camera, which was implemented basgis]

10

B. Geelen, N. Spooren, K. Tack, A. Lambrechts, and M. Jayapala,

on the best-performed system design, and have demonstrated ‘System-level analysis and design of a compact RGB-NIR CMOS

several potential applications using our prototype camera. [19]
Our future work includes the incorporation of denoising and
chromatic aberration correction into the RGB-NIR imagin&Ol
pipeline. Since the noise affects the quality of demosaicking

and color correction, we will consider to incorporate an
existing raw data denoising method [50] and an effective col&tl
correction pipeline with denoising [51]. Chromatic aberration
due to a large difference of refraction indexes between RGB;
and NIR domains is another issue of the single-sensor RGB-
NIR imaging. For this issue, we will consider to incorporat&s]
recent chromatic aberration correction methods [52]-[55] that
are designed for single-sensor RGB-NIR imaging. Smartphone
embedded applications [56]-[59] could be one of potentiE®
future directions of our RGB-NIR imaging system.

[25]
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