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ABSTRACT

Spectral reflectance is an inherent property of objects that is useful for many computer vision tasks. The spectral
reflectance of a scene can be described as a spatio-spectral (SS) datacube, in which each value represents the
reflectance at a spatial location and a wavelength. In this paper, we propose a novel method that reconstructs
the SS datacube from raw data obtained by an image sensor equipped with a multispectral filter array. In our
proposed method, we describe the SS datacube as a linear combination of spatially adaptive SS basis vectors.
In a previous method, spatially invariant SS basis vectors are used for describing the SS datacube. In contrast,
we adaptively generate the SS basis vectors for each spatial location. Then, we reconstruct the SS datacube
by estimating the linear coefficients of the spatially adaptive SS basis vectors from the raw data. Experimental
results demonstrate that our proposed method can accurately reconstruct the SS datacube compared with the
method using spatially invariant SS basis vectors.

Keywords: Multispectral imaging, multispectral filter array, spectral reflectance, spatio-spectral datacube,
spatio-spectral reconstruction.

1. INTRODUCTION

Spectral reflectance is an inherent property of objects that is useful for many computer vision tasks such as object
recognition, tracking, segmentation, relighting, etc. For example, the full description of the spectral reflectance
enables fidelity color reproduction under an arbitrary illumination. The spectral reflectance of a scene can be
described as a spatio-spectral (SS) datacube, in which each value represents the reflectance at a spatial location
and a wavelength. The illustration of the SS datacube is shown in Fig. 2 (a). A number of methods have
been proposed for SS datacube reconstruction from an RGB image.1,2 However, the RGB image only measures
three spectral bands among continuous spectral reflectance, therefore, the accuracy of the reconstruction is very
limited. To reconstruct the SS datacube more accurately, the use of a multispectral image with more than three
spectral bands has received increasing attention.3–9

In the past decades, a wide variety of systems have been developed for capturing the multispectral image.10–14

Recently, a one-shot multispectral imaging system that uses a single image sensor equipped with a multispectral
filter array (MSFA) has been proposed.15–18 The illustration of the one-shot system is shown in Fig. 1 (a). The
one-shot system is very attractive for industrial use because it enables low-cost and simple multispectral image
acquisition. The particular property of the one-shot system is that only one spectral measurement is acquired
at each pixel location since incoming light into the image sensor is spatially and spectrally sampled through the
MSFA. The such subsampled data is called raw data. There are two approaches that reconstruct the SS datacube
from the raw data: (i) sequential reconstruction, and (ii) direct reconstruction. The sequential reconstruction
first interpolates the raw data by a demosaicking process to acquire the multispectral image.16–18 Then, spectral
reflectance is independently reconstructed at each pixel location from the interpolated multispectral image.3–8

In contrast, Parmar et al. proposed the direct SS reconstruction that jointly reconstructs the SS datacube from
the raw data.9

Further author information: (Send correspondence to Y.Monno)
Y.Monno: E-mail: ymonno@ok.ctrl.titech.ac.jp, Telephone: +81-3-5734-3499
M.Tanaka: E-mail: mtanaka@ctrl.titech.ac.jp, Telephone: +81-3-5734-3270
M.Okutomi: E-mail: mxo@ctrl.titech.ac.jp, Telephone: +81-3-5734-3472

Digital Photography IX, edited by Nitin Sampat, Sebastiano Battiato, Proc. of SPIE-IS&T Electronic Imaging, 
SPIE Vol. 8660, 866003 · © 2013 SPIE-IS&T · CCC code: 0277-786/13/$18 · doi: 10.1117/12.2002292

SPIE-IS&T/ Vol. 8660  866003-1

Downloaded From: http://spiedigitallibrary.org/ on 04/02/2014 Terms of Use: http://spiedl.org/terms



:
7

G R G Or G

B G Cy G B

G Or G R G

Cy G B G Cy

G R G Or G

(b) 5-band MSFA

0

0.5

1

300 400 500 600 700 800

S
e
n
si

ti
v
it

y

Wavelength (nm)

R

Or

G

Cy

B

(c) Spectral sensitivities

MSFA
Image

sensor

Incoming

light

(a) One-shot multispectral imaging system

Figure 1. (a) The illustration of the one-shot multispectral imaging system, (b) 5-band MSFA, and (c) spectral sensitivities
of each spectral band.
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(a) Spatio-spectral datacube.

(b) Spatio-spectral reconstruction of the spatio-spectral datacube.
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Figure 2. (a) The illustration of the spatio-spectral datacube. (b) The spatio-spectral reconstruction of the spatio-spectral
datacube. The spatio-spectral datacube is described as a linear combination of spatio-spectral basis vectors.

In this paper, we propose a novel direct SS reconstruction of the SS datacube using a spatially adaptive SS
basis. In the SS reconstruction, the SS datacube is described as a linear combination of SS basis vectors. In
the previous method,9 spatially invariant SS basis vectors are used for describing the SS datacube. In contrast,
we adaptively generate the SS basis vectors for each spatial location. Then, we reconstruct the SS datacube
by estimating the linear coefficients of the spatially adaptive SS basis vectors from the raw data. Experimental
results demonstrate that our proposed method can accurately reconstruct the SS datacube compared with the
method using spatially invariant SS basis vectors.

2. SPATIO-SPECTRAL RECONSTRUCTION

We first describe the SS reconstruction of the SS datacube from the raw data.9 In the SS reconstruction, the SS
datacube is described as a linear combination of SS basis vectors as illustrated in Fig. 2 (b). Now consider the
local SS datacube centered at a pixel location i with p rows and columns, and m bands, the local SS datacube
is represented as:

ri = Qαi, (1)

where ri ∈ R
mp2

is the SS vector that formed by stacking the spectral reflectances in the local SS datacube,
Q = [q1, · · · ,qk, · · · ,qK ] represents the set of SS basis vectors where each column qk ∈ R

mp2
is the k-th SS

basis vector, αi = [α1
i , · · · , αk

i , · · · , αK
i ]T is the linear coefficients of the SS basis vectors, and K is the number
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Figure 3. The schematic block diagram of our proposed method.

of the SS basis vectors used for the reconstruction. By using Eq. (1), the raw data in the p × p patch centered
at the pixel location i is modeled as:

gi = Hiri = HiQαi, (2)

where gi ∈ R
p2

is the vector that formed by stacking the raw data in the patch, and Hi ∈ R
p2×mp2

is the system
matrix that is given by the spectral sensitivities of the multispectral filters and the spectral distribution of the
illumination. From the raw data, the linear coefficients of the SS basis vectors are estimated as:

α̂i = arg min
αi

[
||gi − HiQαi||22 + σ2 ||DλQαi||22

]
, (3)

where Dλ ∈ R
mp2×mp2

is a second-order derivative operator, and σ is a smoothing parameter. In Eq. (3), the first
term is a data term and the second term is a regularization term. While Parmar et al. constrain the sparseness
of the linear coefficients,9 we constrain the second-order derivatives of the spectral reflectances as in [12]. From
Eq. (1) and (2), the SS datacube is reconstructed as: r̂i = Qα̂i.

3. PROPOSED METHOD

In this paper, we aim to reconstruct the SS datacube from the raw data acquired using the 5-band MSFA
proposed in [17] and the optimized spectral sensitivities in [20]. Fig. 1 (b) and (c) respectively show the 5-band
MSFA and the corresponding spectral sensitivities of each spectral band. We call each spectral band as the R,
Or, G, Cy, and B-band from the long wavelength end to the short wavelength end.

In the SS reconstruction, SS basis vectors are typically learned from a spectral image database9,19 and the
learned SS basis vectors are used for all pixel locations. In contrast, we adaptively generate the SS basis vectors
for each spatial location. Fig. 3 shows the schematic block diagram of our proposed method. We assume that
the SS basis is “separable”, which means the SS basis can be decomposed into a spatial basis and a spectral
basis.19 In our proposed method, the spatial basis is adaptively generated for each pixel location by interpolating
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Figure 4. Scenes used in experiments. The sRGB images converted from the captured 31-band images are shown.
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Figure 5. The learned bases.

the G-band data as shown in Fig. 3. There are mainly two advantages of using the G-band data as the spatial
basis: (i) it is well known that spectral correlations are very high between spectral images. Since the G-band is
addressed at the center of visible wavelengths, it is expected that the interpolated G-band image has correlations
with a wide range of spectral images. Therefore, edges or textures of the interpolated G-band image are also
likely to appear in the spectral images in the SS datacube. (ii) We can interpolate the G-band data with relatively
high accuracy because the G-band data is highly sampled in the raw data. Our proposed method effectively
exploits these two advantages.

The adaptive SS basis vectors for the pixel location i is represented as: Qi = [q1
i , · · · ,qk

i , · · · ,qK
i ], where

qk
i = di ⊗bk, di represents the adaptive spatial basis vector that is formed by stacking the interpolated G-band

data in the p × p patch centered at the pixel location i, and bk is the k-th spectral basis vector learned from
a spectral database by principal component analysis (PCA). After generating the adaptive SS basis vectors Qi,
we reconstruct the SS datacube by Eq. (1) and Eq. (3). Finally, the overlaps of the reconstructed SS datacube
are simply averaged.

4. EXPERIMENTAL RESULTS

We captured 500×500 31-band images of 16 scenes for ground truth SS datacubes using a monochrome camera
with a liquid crystal tunable filter.10 The 31-band images are acquired at every 10nm from 420nm to 720nm.
Some scenes used in experiments are shown in Fig. 4, in which the sRGB images converted from the captured
31-band images are displayed. We used 8 scenes for learning bases and the other 8 scenes for evaluation.

We simulated raw data from the ground truth SS datacubes. We used the 5-band MSFA and optimized
spectral sensitivities20 as shown in Fig. 1. To simplify the problem, we assumed noise-free data and white
illumination. Then, the SS datacubes are reconstructed by the following four methods: (i) spectral reflectance
estimation12 after BTES demosaicking16 (BTES), (ii) SS reconstruction using a general PCA SS basis19 (Gen),
(iii) SS reconstruction using a separable PCA SS basis19 (Sep), and (iv) our proposed method (Pro). The method
(i) is the sequential reconstruction, while the methods (ii), (iii), and (iv) are direct SS reconstruction from the
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Table 1. The average PSNR of all 31 bands for each
scene using the separable-PCA basis with different num-
ber of spatial components and spectral components
(spatial×spectral).

Scene 1x8 2x4 4x2 8x1
Bell 30.02 31.68 29.67 27.84

Butterfly 30.73 29.64 24.93 19.89
Chinacloth 26.81 29.11 28.85 26.38
Colorchart 35.52 35.05 26.06 20.70

Doll 30.40 31.08 27.31 23.41
Magnet 36.50 33.14 26.40 23.20

Toy 34.48 33.96 29.24 24.35
Wool 31.12 31.57 31.19 23.82

Average 31.95 31.90 27.96 23.70

Table 2. The average PSNR of all 31 bands for each scene.

Scene BTES Gen Sep Pro
Bell 33.41 33.91 30.02 35.82

Butterfly 34.50 31.30 30.73 38.52
Chinacloth 30.90 32.49 26.81 33.66
Colorchart 38.33 35.68 35.52 39.67

Doll 32.84 33.33 30.40 33.64
Magnet 38.07 35.56 36.50 37.73

Toy 37.09 36.30 34.48 39.05
Wool 34.66 36.15 31.12 37.73

Average 34.97 34.34 31.95 36.98
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Figure 6. The average PSNR of all 8 scenes for each band.

raw data. The general PCA SS basis is learned from the ground truth SS datacubes (8 scenes for learning bases)
by PCA. The sRGB representations of the top 8 components of the general PCA SS basis are shown in Fig. 5 (a).
The separable PCA SS basis is composed of the spatial basis and the spectral basis that are separately learned
from the ground truth SS datacubes (8 scenes for learning bases) by PCA. Fig. 5 (b) and (c) respectively show
the top 8 components of the spatial basis and the spectral basis. The two PCA SS bases are spatially invariant
basis. For the methods (ii), (iii), and (iv), we used the patch size p = 5, the smoothing parameter σ = 0.012,
and K = 8 basis vectors for the reconstruction. For our proposed method, we used the same spectral basis as
shown in Fig. 5 (c) and the adaptive Gaussian upsampling17 for interpolating the G-band data to generate the
adaptive spatial basis.

We first investigate the performance of the SS reconstruction using the separable PCA SS basis. Table 1
shows the average PSNR of all 31 bands for each scene using the separable PCA SS basis with different number
of spatial components and spectral components (spatial × spectral). The combination of one spatial component
and 8 spectral components (1 × 8) represents the best performance among the other combinations, 2 × 4, 4 × 2,
and 8 × 1. Therefore, we used the 1 × 8 combination for the following experiments.

We compared the PSNR of the reconstructed SS datacubes by each method. Table 2 shows the average
PSNR of all 31 bands for each scene, while Fig. 6 shows the average PSNR of all 8 scenes for each band.
These PSNR comparisons show that our proposed method quantitatively outperforms the other methods. Fig. 7
shows the reconstructed spectral reflectances for Butterfly and Chinacloth. Our proposed method can accurately
reconstruct spectral reflectances especially in the edge or texture regions.
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Figure 7. Comparison of the reconstructed spectral reflectances.

Fig. 8 shows sRGB images converted from the ground truth and the reconstructed SS datacubes. The
sequential reconstruction (BTES) generates demosaicking artifacts, i.e. zipper artifacts, especially in the butterfly
wing and in the edge of the colorchart, while the direct SS reconstruction using spatially invariant basis (Gen and
Sep) generates severe color artifacts or blur, especially in the edge of the colorchart. In contrast, our proposed
method using spatially adaptive basis can effectively reduce demosaicking and color artifacts and generate the
edge-preserved images.

5. CONCLUSION

In this paper, we proposed the novel SS reconstruction of the SS datacube using the spatially adaptive SS basis.
The adaptive SS basis is composed of the adaptive spatial basis and the spectral basis. We adaptively generate
the spatial basis for each pixel location by interpolating the G-band data that is highly sampled in the raw data.
Experimental results demonstrate that our proposed method outperforms the other methods both quantitatively
and visually.
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