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Abstract—Single-sensor imaging using the Bayer color filter special optical element such as a prism and a diffraction
array (CFA) and demosaickin_g_is well established for_current grating [4], [5], [10], [11]. In contrast, single-sensor imaging
compact and low-cost color digital cameras. An extension from with the Bayer color filter array (CFA) [13] and demosaicking

the CFA to a multispectral filter array (MSFA) enables us to . Il established f t t and | t col
acquire a multispectral image in one shot without increased size IS well established tor current compact and low-cost color

or cost. However, multispectral demosaicking for the MSFA has digital cameras [14], where only one pixel value among RGB
been a challenging problem because of very sparse sampling ofvalues is recorded at each pixel location because of spatial
each spectral band in the MSFA. In this paper, we propose a high- subsampling of the RGB bands by the CFA. The acquired
performance multispectral demosaicking algorithm, and at the mosaic data is called raw CFA data. A full-color image is

same time, a novel MSFA pattern that is suitable for our proposed . .
algorithm. Our key idea ig the use of the guided filterp(GpF) to generated from the raw CFA data by an interpolation process

interpolate each spectral band. To generate an effective guide called demosaicking [15]-[17]. This single-sensor technology
image, in our proposed MSFA pattern, (i) we maintain the enables us to capture a color image in one shot and a color
samp_l_ing density of the G band as high as the Bayer CFA, video in real time.

and (ii) we array each spectral band so that an adaptive kemel e soution for practical multispectral imaging is an exten-

can be estimated directly from raw MSFA data. Given these . . .
two advantages, we eﬁe)étivew generate the guide image from SION from the CFA to a multispectral filter array (MSFA) [18]—

the most densely sampled G band using the adaptive kernel. In [24], which enables us to acquire a multispectral video in
experiments, we demonstrate that our proposed algorithm with real time without increased size and cost. In the MSFA, more

our proposed MSFA pattern outperforms existing algorithms and  than three spectral bands are arrayed. However, the extension
provides better color fidelity compared with a conventional color fom the CFA to the MSFA is not straightforward because
imaging system with the Bayer CFA. We also show some real . L . o
applications using a multispectral camera prototype we built. of the foIIowmg_ challenges: .(I) multispectral demosaicking
S _ _ _ for the MSFA is a challenging problem because of very
Index Terms—Demosaicking, interpolation, multispectral filter g3 sampling of each spectral band in the MSFA caused
array (MSFA), multispectral imaging, guided filter. by the increase of arrayed spectral bands, (i) we have to
design not only the demosaicking algorithm but also an MSFA
|. INTRODUCTION pattern because of the absence of a de-facto standard MSFA
HE ¢ ligh itted f liah f ﬁsttern corresponding to the Bayer pattern for the RGB color
energy of light emitted from light sources or reflecte aging, and (iii) we also have to consider the feasibility of

by object_s continu_ously spans a wide range of wav e demosaicking algorithm and the MSFA pattern in a real
lengths. In typical color imaging, only three spectral bands (Iﬁ rdware setup

G, and B bands) are measured. For this reason, a considerab though many sophisticated demosaicking algorithms have

amount of potentially available spectral information is lost. Been proposed for the Bayer CFA [15]-[17], not many studies
contrast, multispec_tral imaging W.ith more than three spect ve addressed the multispectral demosaicking and the design
bands can_offe_r reliable spectral information about a _capturg the MSFA pattern. Existing multispectral demosaicking
scene, which is very useful for many computer vision ang,qrishms merely apply a classical demosaicking algorithm
Image processing apphca‘ugns |nclud|_ng _d'g'tal archives [ uch as edge-sensing interpolation [18], [19], bilinear interpo-
hlgh-ﬂdelltydcoIoL_reproducUon [2], relighting [3], segmentaiion of color differences [20], median filtering [21], or linear
tion [4], and tracking [5]. _ o demosaicking [22], [23]. These classical algorithms are easily
In the past few decades, many multispectral imaging Sysyensible for the MSFA, but their performance is insufficient.
tems have been proposed [2]-{11] (see [12] for a comprenefie gemosaicking performance also depends on the MSFA
sive review). However, in practical use, these systems presEQ&em_ However, most existing works have not examined
limitations of size, cost, and real-time processing because ofi-, MSEA pattern is better for the demosaicking algo-
the requirement of multiple cameras [2], [5], [6], multipl&iym |n addition, the existing works, including our previous
shots [7], [8], a high-speed lighting system [3], [9], or §yqks [25], [26], are only theoretical ones and have not tested
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spectral band by the guided filter (GF) [27], which is a RGB-NIR filters A special category of the MSFAs is an
high-performance edge-preserving filter. The key to highdSFA designed for simultaneous capturing of RGB and near-
performance interpolation by the GF is to obtain an effectivafrared (NIR) images [44]-[46]. In [44], [45], the authors
guide image that preserves edges and textures. With this lsaypultaneously optimized the MSFA (more specifically, op-
in mind, we design our proposed MSFA pattern based dmized a combination ratio of the RGB and NIR filters to
a generic method [18] to have two desirable properties florm each spectral filter) and a linear demosaicking matrix
generating the effective guide image from raw MSFA data. loy describing the whole imaging system in a linear form.
experiments, we demonstrate that (i) our joint design of thhis approach can be generalized for multispectral imaging
demosaicking algorithm and the MSFA pattern significantlyy theory. However, as mentioned before, it is physically
improves the demosaicking accuracy and (ii) our proposed aifeasible to develop spectral filters described as a linear
gorithm with our proposed MSFA pattern outperforms existingopmbination of other filters. In [46], the authors proposed
algorithms and provides better color fidelity compared with @ demosaicking algorithm to generate a high-quality RGB
conventional color imaging system with the Bayer CFA. Ndtnage and one additional band image, typically NIR image.
only theoretical study, we also show some real applicatiohwever, it is not straightforward to extend the algorithm for
using a one-shot multispectral camera prototype we built. multispectral imaging with more than four spectral bands.
The remainder of this paper is organized as follows. In Multispectral filters Brauers and Aach proposed an MSFA
Section |l, we present a short review of existing singlawith six evenly subsampled narrow-band filters [20]. Ya-
sensor imaging systems. We describe our joint design of th@maet al. proposed a generalized assorted pixel mosaic that
demosaicking algorithm and the MSFA pattern in Section lltan capture a seven-band image [22]. Aggarwal and Majumdar
Experimental results are reported in Section IV. The configurproposed a framework to design uniform MSFAs [23]. In
tion of our multispectral camera prototype and its applicationlsese works, simple demosaicking algorithms such as bilinear
are reported in Section V. Finally, conclusion is presented interpolation of color differences [20], median filtering [21],

Section VI. and linear demosaicking [22], [23] are applied. Although
these simple algorithms are easily extensible for the MSFA,
Il. RELATED WORKS their performance is insufficient. As another approach, Baone

Classifying by filter types, we briefly review previouslyand Qi proposed a maximum a posteriori probability (MAP)-
proposed single-sensor imaging systems. based demosaicking algorithm [24]. However, the MAP-based

RGB filters The most popular and widely used CFA is thalgorithm is not practical because it necessarily entails high
Bayer CFA [13], for which numerous demosaicking algorithmsomputational cost.
have been proposed [15]-[17]. Although current state-of- The most closely related works to the study described in
the-art Bayer demosaicking algorithms [28]-[31] can offehis paper are those of Miaet al. [18], [19]. Miao and Qi
superior performance, these algorithms are specially desigmedposed a generic method for generating MSFA patterns [18].
for the Bayer CFA. The CFAs alternative to the Bayer CFBy recursively separating checkerboard patterns, the generic
have also been proposed [32]-[34]. Universal demosaickintethod generates the MSFA pattern given the number of spec-
algorithms for these CFAs have also been developed [35], [36hl bands and the sampling densities of each spectral band.
However, these universal algorithms are only applicable for tiszveral works follow this method to develop a demosaicking
CFAs with RGB primary filters. algorithm [21], [24]. Miaoet al. also proposed the binary

Linear combination of RGB filters Recently, some CFAs tree-based edge-sensing (BTES) demosaicking algorithm [19],
with multiple color filters have been proposed [37], [38]. Iwhich is applicable for all the MSFA patterns that can be
these CFAs, each color filter consists of a linear combinatigenerated by the generic method [18]. The BTES algorithm
of the RGB primary filters as below: iteratively performs edge-sensing interpolation to generate a

o full multispectral image. Although the generic method and

Se(A) = aSr(A) + Sy (A) + 75 (V), (1) the BTES algorithm are useful as a general framework, the
whereS,(A) is the resultant filter sensitivity at the wavelengtiperformance of the BTES algorithm is insufficient for severely
A, which is a linear combination of the sensitivities of th@ndersampled raw MSFA data. Additionally, in the generic
RGB primary filters,S,.(X), Sq(A), and.Sy(A). Demosaicking method, the authors have not discussed which MSFA pattern
algorithms for an arbitrary CFA including the above CFAamong possible patterns is the best for the BTES algorithm.
have also been proposed [39], [40]. Because each color filteiFinally, all the works mentioned in this category are not
is designed as a linear combination of the RGB primary filterseyond theoretical ones and have not tested their feasibility in
these works are not beyond the scope of three-band cadoreal hardware setup.
imaging. Also, it is physically infeasible to develop such color
filters.

RGB-White filters Some CFAs contain RGB pixels plus
white (panchromatic) pixels [41]-[43]. The purpose of these
CFAs is to improve the sensor sensitivity, rather than to acquireFig. 1 (a) shows our proposed MSFA pattern. Fig. 1 (b)
multispectral information. Most demosaicking algorithms foshows the corresponding spectral sensitivities of each spec-
these CFAs apply simple color difference interpolation [42] dral band. In this paper, we examine the design of a five-
linear demosaicking [43]. band MSFA and call the spectral bands R, Or, G, Cy,

I1l. JOINT DESIGN OFMSFA PATTERN AND
DEMOSAICKING ALGORITHM
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Fig. 1. (a) Our proposed MSFA pattern, (b) spectral sensitivities of each spectral band, and (c) the overall flow of our proposed multispectral demosaicking
algorithm. In our proposed algorithm, we first generate the guide image for the GF from the most densely sampled G band by the interpolation with an

adaptive kernel. The adaptive kernel is estimated from raw MSFA data based on the derivative requirement. Then, the GF is performed to interpolate the G,
Or, and Cy bands. For the interpolation of the R and B bands, we update the guide image to the interpolated Or and Cy band images respectively.

and B bands respectively from the long-wavelength end ¢mide image quality plays a crucial role for high-performance
the short-wavelength end. For the spectral sensitivities, \eerpolation. To generate the guide image effectively, we
simply assume uniform Gaussian sensitivities. Generally, $elect our proposed MSFA based on two design requirements:
multispectral imaging, an increasing number of spectral ban(s Density requirementwe maintain the sampling density of

is expected to improve spectral estimation accuracy [4The G band as high as the Bayer CFA, and D@rivative

[48]. However, it is not necessarily true for the single-sensoequirement we array each spectral band so that derivatives
multispectral imaging because sampling densities of eachAn be calculated at every pixel location from raw MSFA
spectral band in the MSFA become lower if we array momata using our proposed derivative calculation method. In our
spectral bands. Therefore, there is a trade-off between tidgorithm, we first generate the effective guide image from
number of spectral bands and the spatial resolution. It tise most densely sampled G band by the interpolation with
also known that the demosaicking performance is affectad adaptive kernel, which is estimated based on the calculated
by the spectral sensitivities [49]-[52]. Although all of theséderivatives from raw MSFA data. Then, we interpolate the G,
components should be considered together, the investigat®n and Cy bands by the GF using the generated guide image
of optimal spectral number and spectral sensitivities is beyoadsuming spectral correlations. For the interpolation of the R
the scope of this paper and our future work. Hereafter, veed B bands, we respectively update the guide image to the
describe the MSFA pattern as the MSFA for simple notatioiterpolated Or and Cy band images because closer spectral

bands have a higher spectral correlation.
Fig. 1 (c) shows the overall flow of our proposed multi- g P

spectral demosaicking algorithm. Our key idea is to use the
GF [27] to interpolate each spectral band. In the GF, the
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TABLE |
THE PROPERTIES OF THE THREM SFA PATTERNS SHOWN INFIG. 2.
[ i MSFAL [ MSFA2 | Proposed MSFA|
Sampling densitie§G, Or,Cy, R, B} || {3, 4,2, 4,3} | {3,545 5 | (3.3 4.5. 43
Density requirement v v
Derivative requirement v v

Diagonal derivatives Diagonal derivatives
at Or pixel at Cy pixel

a) Binary tree (c) Binary treefor
for MSFA1 our proposed MSFA
z,(m,n)
=17 -1, = -1
m-1n+1 m+in-1 m—1n+1 m+1in-1
z,(m, n) z,(m,n)
_ Ib _ Ib — IT — IT
— im-1n-1 m+1in+1 m-1,n-1 m+1in+1

Fig. 3. Examples of the diagonal derivative calculation at Or and Cy pixel
locations.

(d) MSFA1 (e) MSFA2 (f) Proposed M SFA

Fig. 2. (a)-(c) Three possible binary trees for a five-band MSFA generated L .
by the generic method and (d)-(f) the resultant three MSFAs generated fréf§ually cannot calculate the derivatives directly from the raw

each binary tree by assigning higher sampling densities in the order of G, MISFA data because different spectral bands are arrayed in a
Cy. R, and B bands. (f) is our proposed MSFA. mosaic pattern. Here, we propose a novel derivative calculation
method from raw MSFA data.
For natural images, spectral bands are well known to be
correlated in high-frequency components [53]. Based on this
We select our proposed MSFA from candidate MSFAfct, we assume that the derivatives of each spectral band are
generated by the generic method [18] based on the d@RProximately equivalent. Then, we calculate the derivatives
sity requirement and the derivative requirement. The genelitdiagonal directions as
method generate the MSFAs by recursively separating the

A. Selection of our proposed MSFA

checkerboard pattern based on a binary tree. The binary tree zu(m,m) = Iy o — I s 2
is defined by the number of spectral bands and the sampling zy(m,m) =I5y = I s 3

densities of each spectral band, which are given by users.
Fig. 2 (a)-(c) show the three possible binary trees for waherez, andz, are the diagonal derivatives at a pixel location
five-band MSFA. The MSFA is formed by assigning eactwn,n), Iy, ,, is a pixel intensity of thec band at the pixel
spectral band to a leaf of the binary tree. Because it is notation (m,n), and ¢, and ¢, are corresponding spectral
impractical to compare all assigning combinations for eaddands at respective pixel locations. Fig. 3 shows examples
binary tree, we here assign higher sampling densities in tbe the diagonal derivative calculation at Or and Cy pixel
order of G, Or, Cy, R, and B bands considering our proposégtations in our proposed MSFA. In this way, we calculate the
demosaicking algorithm assuming spectral correlations and therivatives in the diagonal directions, instead of the standard
guide update strategy. Fig. 2 (d)-(f) show the resultant threerizontal and vertical directions because it is impossible to
MSFAs including our proposed MSFA (Fig. 2 (f)). We describarray each spectral band to calculate horizontal and vertical
the other two MSFAs as MSFAL and MSFAZ2 respectively. derivatives by the similar way for any five-band MSFA. As
In the density requirement, we maintain the sampling def-consequence of our proposed derivative calculation method,
sity of the G band as high as the Bayer CFA to make ttie derivative requirement is that all pixels must have adjacent
interpolation for the guide image precise. In the derivativdiagonal pixels of the same spectral band in each diagonal
requirement, we calculate derivatives at every pixel locatighirection.
from raw MSFA data. Almost all existing interpolation algo- Table | presents a summary of the properties that each
rithms seek to exploit the derivatives (also called gradients) MSFA has. Consequently, only our proposed MSFA satisfies
interpolate the input data along edge directions. However, Wweth the density requirement and the derivative requirement.
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B. Proposed multispectral demosaicking algorithm each window are estimated by minimizing the following cost

In our proposed algorithm, we first generate the guid@nction:
image for the GF by interpolating the G band using an B 9 9
adaptive kernel. The adaptive kernel is a spatially variant (ax,, bx,) = Z M ((ax, I +bx, =Px;) +€“xp)’
kernel estimated based on image structures, which is adaptive XiCxp (®)
to edges and textures [54]. We estimate the adaptive kernel in
a similar way with the original method [54] as where py, is the intensity of the input subsampled data at
«THT C-1Hx the locationx;, My, is the binary mask at the locatiag;,
ky (x) = exp | — ————2 | | (4) and e is a smoothing parameter. Because the location
i 2h2 iy, 2 is involved in all windows that contain the locatiogy, the
where Cy, is the covariance matrix of the Gaussian kernePriginal GF generates the final output at the locatignby
h stands for a global smoothing parametgs, is a local simply averaging the results of each window. Instead, we
» ) S .
smoothing parameter, which controls the kernel size at edeﬁoduce a weighting averaging based on the cost as
pixel Ipcation, _an(H is a ro.tation matrix t_hat laligns the _pixel Ux, = Gixe, I, + b, (9)
coordinates with the direction of the derivatives. Specifically,
we use the rotation matrix, which rotates the pixel coordinatééere

by 45 degrees. The covariance mat@y_ is estimated based _ 1
. . . . Xi — Y15 —ak Xp Ux Xp 1
on the diagonal derivatives around the locatignas ' X, x; _eXp( A (o, bx,)) ax, (10)
1 - 1
cIl= by, = exp (—aF (ax,,bx. )) bx. , 11
[Ny, | T W x; p(—ak (ax, bx,)) bx,, (1)
Z 2u(Xj)2u(X;) Z 2u(X5) 20 (%) where« is a parameter that controls the weighting dig,
% €Ny % €N ., (5) Is the normalizing factor, which is the sum of the weights.
Z 2u(X5) 20 (%) Z 2 (X5) 20 (%)
xj €Nsey, X;j €N, IV. EXPERIMENTAL RESULTS

wherez, andz, are the diagonal derivatives calculated frorA. Datasets and experimental settings
the raw MSFA data)Vy, denotes neighbor pixels around the |, exheriments, we used two multispectral image datasets:

location x,,, and | Ny, | is & normalizing factor, which is the 1o cAVE dataset [22], [56] and our dataset. Both datasets
number of pixels included iV, . _ o were captured using a monochrome camera with a Varispec
_ Based on the adaptive kernel weight, the guide image i§,iq crystal tunable filter [7], [57]. The CAVE dataset
interpolated as consists of 31-band multispectral images of 32 scenes. The
1 31-band images are acquired at every 10 nm from 400nm to
I, = Wk, Z Py (%5 = %p) Mo I © " 700nm. The image size is 512 512. The CAVE dataset is
i G often used as a standard multispectral image dataset. In the
where I stands for the interpolated G pixel value at th€AVE dataset, many images are dominated by smooth objects
location x,,, My, signifies a binary mask at the location, or backgrounds. Our dataset consists of 31-band images, which
kx,(x) denotes the adaptive kernel weight,, represents a are acquired at every 10 nm from 420nm to 728nfie orig-
window centered at the locatiot),, andWy, is a normalizing inal image size of our 31-band images is 204&048. From
factor that is the sum of the kernel weights. The binary maske original high-resolution images, we generated clipped
My, is set to one if the G band data is sampled at thgage dataset of 30 scenes as shown in Fig. 4. The image
associated pixel location and zero for other cases. size of the clipped images is 500 500. We selected the
Then, we interpolate each spectral band by the GF [2¢)ipped regions with rich textures and colorful objects. This is
The generated G band guide image is used for interpolatibgcause the main challenges of the single-sensor multispectral
the G, Or, and Cy bandsFor the interpolation of the R andimaging are in the texture and colorful regions. For smooth
B bands, we update the guide image to the interpolated f@gions, demosaicking algorithms generally work well for both

and Cy band images respectively. the three-band Bayer CFA and the proposed five-band MSFA.
In the GF, the filter output in each local window is modelegor colorless regions, both typical three-band imaging and our
by a linear transformation of the guide image as proposed five-band imaging can reproduce accurate colors.

) Ground-truth five-band images were simulated from the
31-band images. Then, the mosaicking and demosaicking
wherew,, represents a window centered at the pixel locatigorocesses were performed. To evaluate colorimetric accuracy
Xp, X; 1S a pixel location in the windowyy, is the filter inthe SRGB domain, we estimated spectral reflectance images
output at the locatiorx;, and Iy, is the intensity of the guide from the demosaicked five-band images and converted the
image at the locatiow;. The linear coefficientsat , bx,) for reflectance images to SRGB images using xyz color matching

Ox; = Ox, Ix; +bx,, VX € wy,,

1We also apply the GF to the G band because if a smoothing parametefWe removed 400nm and 410nm because they are unreliable as a result of
e # 0in Eq. (8), the result G band image is not identical to the guide imagthe very low sensitivities of the Varispec filter in 400nm and 410nm.
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Fig. 4. Our multispectral image dataset.

TABLE I
THE AVERAGE PSNR, CPSNR, BLTAE, AND CIEDE2000 [55]PERFORMANCE OF DIFFERENT DEMOSAICKING ALGORITHMS ANDMSFAS. THE
VALUES IN PARENTHESES REPRESENT THE STANDARD DEVIATION

5band || sSRGB

Light | Data l';"a?t';'?n Algo. || PENR | PSR | PSNR Pg;‘R PINR PSNR || PSNR | CPSNR | DeltaE Coor
wve. Ave.

51es || 4259 | 4204 | 4090 | 4028 | 4054 | 4127 || 3663 | 3643 || 267 | 354

MSFAL 4.43) | (4.29) | (4.22) | (441) | 4.72) | 4.25) | (3.88)| (3.87) | o7 | (1.14)

Proposed|| 4470 | 42.02 [ 4143 | 4127 | 4178 | 4242 || 3742 | 3724 | 252 | 333

(5.02) | (5.00) | (4.20) | (4.71) | (4.97) | (4.59) || (4.05) | (4.06) | (1.01) | (1.01)

oTes || 3926 | 4ZIL| 4654 | 37.84 | 3730 | 4061 || 36.83 | 3561 | 292 | 3.76

65 | cave | msmaz @.11) | (432) | 4.42) | 435) | 4.47) | 4.16) | (3.84)| (3.86) | (1.15) | (L.15)

Proposed|| 4359 | 45.02 [ 45.71 | 43.00 [ 4181 | 43.85 | 39.08 | 38.65 || 244 | 3.0

@.62) | (457) | 4.25) | (5.00) | 4.83) | (4.49) || (3.94) | (3.98) | (0.93) | (0.84)

oTEs || 4260 | 3941 | 4654 | 37.83 | 4046 | 4137 || 36.94 | 3581 | 285 | 381

Proposed (4.45) | (4.21) | (442) | (431) | (4.70) | (4.26) || (3.83)| (3.87) | @.17)| (1.25)

Proposed|| 25:36 | 4476 | 4806 | 44.68 | 4396 | 45.36 | 40.00 | 39.38 | 235 | 3.9

(4.49) | (4.70) | (4.80) | (4.86) | (4.82) | (4.56) || (3.86) | (3.89) | (0.95) | (0.87)

1S || 3830 | 40.84 | 3972 | 40.14 | 3924 | 39.65 || 3579 | 3541 || 186 | 231

MSFAL (3.99) | 427 | 4.50) | (4.80) | 4.30) | (4.15) || 357)| (352) | (0.55) | (0.70)

Proposed|| 4217 | 4130 | 4034 | 4049 [ 4212 | 4128 || 36.74 | 3619 | L78 | 220

(4.94) | (5.05) | (4.60) | (4.87) | (4.86) | (4.56) || (3.82) | (3.75) | (0.55) | (0.69)

Sres || 3471 4081 | 4551 | 3631 | 3549 | 3857 || 3540 | 3410 | 231 | 2.74

oes | our || mseaz (3.60) | (4.14) | (5.00) | (4.58) | (3.97) | (3.97) || (3.48) | (3.45) | (0.72) | (0.88)

Proposed|| 4228 | 4383 | 44.63 | 4203 | 4199 | 42.95 || 3834 | 3775 | 168 | 205

4.89) | (4.97) | (4.66) | (4.92) | 4.73) | 447) | 3.76) | (3.67) | ©53) | (0.64)

oTes || 3827 [ 3705 | 4551 | 3634 | 3911 | 39.26 || 3558 | 3428 | 207 | 258

Proposed (3.94) | (401) | (5.00) | (457) | @.27) | (4.09) || (3.59) | (3.46) | (0.63) | (0.83)

Proposed|| 4382 | 4328 | 4657 | 4202 [ 4362 | 4404 | 39.00 | 3807 | 156 | 188

(5.41) | (5.61) | (5.99) | (5.20) | (5.19) | (5.09) || (4.02) | (3.92) | (0.52) | (0.61)

functions and the xyz to sRGB transformation matrix witl. Comparison of multispectral demosaicking algorithms for
a correct white point [58], [59]. We used a linear moddlifferent MSFAs

basetdr slpbe ctiralfr(ra]ﬂ(teictr?ncigigm?tlonl rﬁit??i[sl’r[géwt'”: E'%htwe first compare our proposed algorithm with the BTES
spectral basis functions a € regulanzation parameter = z%qgﬂ@'orithm [19] for the three MSFAs shown in Fig. 2. Table Il
The spectral basis functions were calculated using PCA fro . .

presents the numerical performance of the algorithms for the

1269 Munsell color samples [60]. We used the CIE A (mt' ree MSFAs under the CIE D65 illuminant. Our proposed al-

candescence), CIE D65 (daylight), and CIE F12 (fluoresce rithm with our proposed MSFA generally provides superior

flluminants [58], [59)] for the. evalua_tion. W.e evaluated th‘?e ults. For the Or band, the MSFA2 outperforms ours because
EISEND%Z%ESI\[IE%]%Zl:z)%ngi:zgd%?nnﬂlr?tsr?gaelIgv:?SaiiF:)ice)’ HME MSFA2 has the higher sampling density of the Or band
’ in addition to the high sampling density of the G band. Fig. 5
shows a visual comparisdrof the guide images generated
using our proposed algorithm for the three MSFAs. The
MsFa2 only satisfies the density requirement. We performed
simple edge-sensing interpolation to generate the guide image
because the adaptive kernel is not available. Consequently,
severe artifacts arise in edges. The MSFAl only satisfies

For our proposed algorithm, we used the smoothing para
etersh = 1/255 andjux, = 1 in Eq. (4), the7 x 7 window for
the covariance matrix estimation in Eq. (5), the 3 window
for guide image generation in Eq. (6), thex 9 window for
the GF and the smoothing parametet 0 in Eqg. (8), and the

Weighﬁng parameter :.3000 in Eq. (10) E_’md Eq. (11). Pixel 3Gamma correction is applied merely for display in all result images in
intensities were normalized from 0 to 1 in all processes.  this paper.
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= 7 Ground truth (G band) MSFAL1 with only derivative requirement
8A

| D")" . - _

Character (SRGB) MSFA2 with only density requirement  Pro. MSFA with both requirements
Fig. 5. Visual comparison of the guide images generated by our proposed algorithm using different MSFAs.

- MSFAl + BTES MSFA2 + BTES Pro. MSFA + BTES
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Fig. 6. Visual comparison of the demosaicked images using different MSFAs and demosaicking algorithms.

e

Ground truth (Cy band)
CAVE dataset:

Egyptian statue (SRGB)

Ground truth (R band)
Our dataset:

Can (sRGB)

the derivative requirement. Compared with the MSFA1, th@. Comparison of multispectral imaging with color imaging
artifacts in edges are reduced because the adaptive kernel is ) ) ) ) ]
useful for the guide image generation. However, the result'We next compare the five-band multispectral imaging with
quide image is blurred because of the low sampling density € conventional three-band color imaging using the Bayer
the G band. In contrast, our proposed MSFA satisfies the bétfA- For the three-band Bayer CFA, the similar process flow
requirements. The guide image is effectively generated fra#d the five-band MSFA was simulated to generate the sRGB
the G band with the high-sampling density using the adapti82ges, assuming the spectral sensitivities of a real color
kernel. Fig. 6 shows a visual comparison of the demosaické@mera. We used the adaptive homogeneity-directed (AHD)
images. These results demonstrate the effectiveness of 8@orithm [28] and the local polynomial approximation (LPA)
joint design of the MSFA and demosaicking algorithm, whicflgorithm [29] for the Bayer demosaicking. Both algorithms
markedly improves the demosaicking performance. e}rﬁ well known high-performance Bayer demosaicking algo-
rithms.

Table Il presents a summary of numerical performance
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TABLE Il
THE AVERAGE PSNR, CPSNR, BLTAE AND CIEDE2000 [55]PERFORMANCE OF THE CONVENTIONAL COLOR IMAGING WITH THEBAYER CFA AND
THE FIVE-BAND MULTISPECTRAL IMAGING. FOR THEBTESALGORITHM, WE SELECTED THE BESTMSFA (MSFAL1)IN TERMS OF THECIEDE2000
METRIC IN TABLE Il. THE VALUES IN PARENTHESIS REPRESENT THE STANDARD DEVIATION

5band || sSRGB
, MSFA PSNR | PSNR | PSNR | PSNR | PSNR CIEDE
Light Data pattern Algo. R Or G Cy B PASNR PSNR | CPSNR || DeltaE 2000
ve. Ave.
AHD E - - - - - 3660 | 3150 || 249 | 255
Bayer - - - - - - (3.66) | (3.64) || (1.24) | (0.97)
™ - - - - - - 3746 | 3261 || 231 | 246
A | cave - - - - - - (354) | (3.54) || (1.07) | (0.91)
vseal || s || 3998 [ 4225 | 4520 [ 4959 | 5448 | 4630 || 36.34 | 3548 || 191 | 249
(4.44) | (4.33) | (4.18) | (4.30) | (4.59) | (4.21) || (3.84) | (3.74) || (0.86) | (1.03)
43.00 | 45.04 | 52.39 | 54.13 | 50.15 | 50.74 || 39.98 | 3852 || L71 | 2.19
Proposed|| Proposed|| ;o) | (460) | (4.73) | (4.88) | (4.74) | (451) || (3.83) | (3.76) || (0.73) | (0.84)
AHD - - - - - - 33.36 | 2758 || 329 | 262
Bayer - - - - - - (3.71) | (3.90) || (1.30) | (0.87)
™ - - - - - - 3492 [ 2941 || 268 | 219
A our - - - - - - (3.66) | (3.85) || (1.01) | (0.66)
vsear | mres || 35.77 | 4145 [ 4445 [ 4968 | 5356 | 4498 | 3536 | 34.72 || 161 | 174
(3.97) | (4.26) | (4.34) | (4.71) | (4.27) | (4.08) || (352) | (357) || (0.50) | (0.54)
4161 | 4399 | 51.21 | 52.48 | 57.92 | 49.44 || 38.49 | 3759 || 1.46 | 149
Proposed|| Proposed|| 5 09) 634) | G.71) | @87) | @.44) | @ 66) 371) | (356) || (0.47) | (0.49)
AHD - - - - 3987 | 3850 || 255 | 3.23
Bayer - - - - - - (3.85) | (3.87) || (1.02) | (0.90)
™ - - - - - - 4060 | 3920 || 244 | 3.13
oes || cave - - - - - - (3.70) | (3.75) || (0.91) | (0.85)
visear | Bres || 4259 | 4204 [ 4090 | 40.28 | 4054 | 4127 | 36.63 | 3643 || 267 | 354
(4.43) | (4.29) | (4.22) | (4.41) | (4.72) | (4.25) || (3.88) | (3.87) || (1.07) | (1L.14)
bronosed|l Proposed|| 2536 | 44.76 | 48.06 | 4468 | 43.95 | 4536 || 4000 | 39.38 || 235 | 3.09
P P (4.49) | (4.70) | (4.80) | (4.86) | (4.82) | (4.56) || (3.86) | (3.89) || (0.95) | (0.87)
AMD - - - - - - 3658 | 34.99 || 244 | 2.73
Bayer - - - - - - (3.46) | (3.46) || (0.87) | (0.97)
oA = - - - - - 3808 | 3631 || 207 | 2.29
pes || our - - - - - - (3.48) | (3.60) || (0.74) | (0.76)
vseal || sres || 3830 [ 4084 | 39.72 [ 4014 | 39.24 | 3965 || 3579 | 3541 || 186 | 231
(3.99) | (4.27) | (4.50) | (4.80) | (4.30) | (4.15) || (357) | (352) || (0.55) | (0.70)
bronosed|l Proposed|| 2382 | 4328 | 4657 | 4292 | 4362 [ 4404 [ 39.00 | 3807 || 156 | 188
P P (5.41) | (5.61) | (5.99) | (5.20) | (5.19) | (5.09) || (4.02) | (3.92) || (0.52) | (0.61)
AHD - - - - - - 36.13 | 3063 || 4.06 | 3.99
Bayer - - - - - - (3.41) | (3.84) || (1.59) | (1.32)
oA = - - - - - 3657 | 3072 || 3.97 | 3.94
f1o || cave - - - - - - (3.35) | (3.83) || (1.53) | (1.29)
viseal || sres || 6347 [ 5113 | 5300 | 6034 | 64.78 | 5854 || 3583 | 3415 || 248 | 281
(4.21) | (4.17) | (4.10) | (4.25) | (4.61) | (4.13) || (3.43) | (3.51) || (0.92) | (1.00)
68.33 | 54.45 | 50.56 | 64.67 | 67.85 | 6207 || 38.73 | 3535 || 243 | 2.77
Proposed|| Proposed|| ;50 | (432) | (4.27) | (4.45) | (4.24) | (4.18) || (3.33) | (363) || (0.80) | (0.84)
AHD E - - - - - 3464 | 2957 || 355 | 271
Bayer _ - ; ; ; - (3.39) | (3.26) || (1.21) | (0.73)
™ - - - - - - 35904 | 3115 || 297 | 232
e | our - - - - - - (3.24) | (3.07) || (0.94) | (0.55)
viseal || sres || 5914 [ 5010 | 5I62 [ 5957 | 6339 | 56.76 || 36.13 | 3578 || 182 | 185
(3.87) | (4.07) | (4.30) | (4.70) | (4.22) | (4.02) || (3.19) | (3.08) || (0.50) | (0.51)
65.06 | 52.48 | 57.34 | 62.07 | 65.10 | 60.41 || 38.34 | 3728 || 1.86 | 181
Proposed| Proposed| ;o) | (456) | (4.89) | (4.46) | (3.68) | (3.89) || (3.04) | (2.74) || (0.46) | (0.44)

under the CIE A, CIE D65, and CIE F12 illuminants. In mosteproduces the sRGB images more accurately than the con-
cases, our proposed MSFA and demosaicking algorithm prentional color imaging system does. Fig. 8 shows the visual
duces the best results. Especially, our proposed multispectrainparison of the resultant SRGB images for the resolution
imaging markedly outperforms conventional color imaging fazhart. These results demonstrate that our proposed MSFA and
the CIE A and CIE F12 illuminants because it is difficult talgorithm can generate the image without considerable loss
estimate the spectral reflectance images accurately from oafyresolution compared with the Bayer CFA, while the BTES
three-band images under the non-uniform CIE A and Cl&gorithm generates the severely blurred image.

F12 illuminants. Fig. 7 shows the visual comparison of the
resultant SRGB images. The lower half of the image shows the
corresponding color difference (CIEDE2000 [55]) map, where We built a one-shot multispectral camera prototype to eval-
brighter values represent larger colorimetric errors. Theyate the feasibility of our proposed MSFA and demosaicking

results demonstrate that our proposed MSFA and algoritttgorithm in a real hardware setup. Fig. 9 shows the config-
uration of our multispectral camera prototype. The prototype

V. PROTOTYPE
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Bayer + AHD Bayer + LPA MSFAl + BTES Pro. MSFA + Pro. Algo.
Fig. 7. Visual comparison of SRGB images. The lower half of the image shows the color difference (CIEDE2000 [55]) map, where brighter values represent
larger colorimetric errors.
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Fig. 8. Visual comparison of sSRGB images for the resolution chart.

— i EMUDA

480 580 680 Cameralink cable

Wavelength (nm)
Spectral sensitivities | e

i Camera system
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Fig. 9. Configuration of our multispectral camera prototype.

consists of the five-band image sensor (2/3 inch CMOS) aadull-HD five-band multispectral video and display the sSRGB
the camera system including a FPGA board, which is linkeohages at 30 fps without considerable loss of resolution.

0 rt]hercgytlaratibﬁ ah?amfrsd';:ik calzlre.l \[/)Vemnamiedkirt]heAlr A0S\ evaluated our prototype for relighting and spectral
?i(tehrio(EMal[J)aA)o Tﬁe pEﬁ/IUD A r?gscouar r?) 8;: dC ﬁVS_bffrllo'eflectance estimation. Fig. 10 shows the comparison of re-
MSFA. We addéd the Or and Cy bands Ft)o (E)onventional Rg'ghting results. Fig. 10 (a) is the input image captured by
' ) y OL(IJ’ prototype under a fluorescent illuminant. From the input
bands. Spectral filters of the Or and Cy bands were selecte ) . .
from a set of currently available filters. The camera s stelmage’ we generated the image under the CIE D65 illuminant
. y e . : . y Bé]/ relighting, where the spectral reflectance image is estimated
executes image processing algorithms including our proposed : . .
demosaicking, white balancing, and sSRGB transformation [id rendered to the image under the CIE D65 illuminant.
nfirm dthgt, r muli trg,l mera. brotot n .t rl%). 10 (b) is the relighting result of conventional three-band
co ed that our muftispectral camera prototype can captity, imaging, where we only used RGB bands among the
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\ / \ /

(a) Input (fluorescence) (b) 3-band relighting (D65) (c) 5-band relighting (D65) (d) 31-band ground truth (D65)
Fig. 10. Comparison of relighting results between our proposed five-band multispectral imaging and the conventional three-band color imaging.
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(a) Spectral reflectance estimation results on the blue uniform. (b) Spectral reflectance estimation results on the yellow uniform.

Fig. 11. Comparison of spectral reflectance estimation between our proposed five-band multispectral imaging and the conventional three-band color imaging.

five bands of our prototype. Fig. 10 (c) is the relighting resultand. From our experiments, we demonstrated that (i) our joint
of our proposed five-band imaging. Fig. 10 (d) is the grouriksign of the demosaicking algorithm and the MSFA based on
truth generated from the 31-band multispectral image capturtbe two requirements markedly improves the total performance
by using the Varispec tunable filter [7], [57]. These resultsf the system and (ii) our proposed algorithm outperforms
demonstrate that our proposed five-band imaging can relightisting algorithms and provides better color fidelity than a
the image more accurately than the conventional color imagingnventional color imaging system with the Bayer CFA.
on the wings of the butterfly. Not only theoretical study, we also built the multispectral

Fig. 11 shows the comparison of spectral reflectance esmera prototype and confirmed the feasibility of our proposed
timation on the blue and yellow uniforms. The blue line ialgorithm and MSFA in an actual hardware setup. Our mul-
the 31-band ground truth. The red dash line is the result ti§pectral camera prototype can capture a full-HD five-band
using all five bands of our prototype. The green dot line imultispectral video and display the sSRGB images at 30 fps
the result of using only RGB bands of our prototype. Fig. 1ithout significant loss of resolution. We also demonstrated
demonstrate that our proposed five-band imaging can estimthte real applications of our prototype for relighting and spec-
the spectral reflectance more accurately than the conventiomal reflectance estimation. Our proposed system outperforms
color imaging. the conventional color imaging system especially for objects

with highly color-saturated regions.
VI. CONCLUSION
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