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Abstract—Single-sensor imaging using the Bayer color filter
array (CFA) and demosaicking is well established for current
compact and low-cost color digital cameras. An extension from
the CFA to a multispectral filter array (MSFA) enables us to
acquire a multispectral image in one shot without increased size
or cost. However, multispectral demosaicking for the MSFA has
been a challenging problem because of very sparse sampling of
each spectral band in the MSFA. In this paper, we propose a high-
performance multispectral demosaicking algorithm, and at the
same time, a novel MSFA pattern that is suitable for our proposed
algorithm. Our key idea is the use of the guided filter (GF) to
interpolate each spectral band. To generate an effective guide
image, in our proposed MSFA pattern, (i) we maintain the
sampling density of the G band as high as the Bayer CFA,
and (ii) we array each spectral band so that an adaptive kernel
can be estimated directly from raw MSFA data. Given these
two advantages, we effectively generate the guide image from
the most densely sampled G band using the adaptive kernel. In
experiments, we demonstrate that our proposed algorithm with
our proposed MSFA pattern outperforms existing algorithms and
provides better color fidelity compared with a conventional color
imaging system with the Bayer CFA. We also show some real
applications using a multispectral camera prototype we built.

Index Terms—Demosaicking, interpolation, multispectral filter
array (MSFA), multispectral imaging, guided filter.

I. I NTRODUCTION

T HE energy of light emitted from light sources or reflected
by objects continuously spans a wide range of wave-

lengths. In typical color imaging, only three spectral bands (R,
G, and B bands) are measured. For this reason, a considerable
amount of potentially available spectral information is lost. In
contrast, multispectral imaging with more than three spectral
bands can offer reliable spectral information about a captured
scene, which is very useful for many computer vision and
image processing applications including digital archives [1],
high-fidelity color reproduction [2], relighting [3], segmenta-
tion [4], and tracking [5].

In the past few decades, many multispectral imaging sys-
tems have been proposed [2]–[11] (see [12] for a comprehen-
sive review). However, in practical use, these systems present
limitations of size, cost, and real-time processing because of
the requirement of multiple cameras [2], [5], [6], multiple
shots [7], [8], a high-speed lighting system [3], [9], or a
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special optical element such as a prism and a diffraction
grating [4], [5], [10], [11]. In contrast, single-sensor imaging
with the Bayer color filter array (CFA) [13] and demosaicking
is well established for current compact and low-cost color
digital cameras [14], where only one pixel value among RGB
values is recorded at each pixel location because of spatial
subsampling of the RGB bands by the CFA. The acquired
mosaic data is called raw CFA data. A full-color image is
generated from the raw CFA data by an interpolation process
called demosaicking [15]–[17]. This single-sensor technology
enables us to capture a color image in one shot and a color
video in real time.

One solution for practical multispectral imaging is an exten-
sion from the CFA to a multispectral filter array (MSFA) [18]–
[24], which enables us to acquire a multispectral video in
real time without increased size and cost. In the MSFA, more
than three spectral bands are arrayed. However, the extension
from the CFA to the MSFA is not straightforward because
of the following challenges: (i) multispectral demosaicking
for the MSFA is a challenging problem because of very
sparse sampling of each spectral band in the MSFA caused
by the increase of arrayed spectral bands, (ii) we have to
design not only the demosaicking algorithm but also an MSFA
pattern because of the absence of a de-facto standard MSFA
pattern corresponding to the Bayer pattern for the RGB color
imaging, and (iii) we also have to consider the feasibility of
the demosaicking algorithm and the MSFA pattern in a real
hardware setup.

Although many sophisticated demosaicking algorithms have
been proposed for the Bayer CFA [15]–[17], not many studies
have addressed the multispectral demosaicking and the design
of the MSFA pattern. Existing multispectral demosaicking
algorithms merely apply a classical demosaicking algorithm
such as edge-sensing interpolation [18], [19], bilinear interpo-
lation of color differences [20], median filtering [21], or linear
demosaicking [22], [23]. These classical algorithms are easily
extensible for the MSFA, but their performance is insufficient.
The demosaicking performance also depends on the MSFA
pattern. However, most existing works have not examined
which MSFA pattern is better for the demosaicking algo-
rithm. In addition, the existing works, including our previous
works [25], [26], are only theoretical ones and have not tested
their feasibility in a real hardware setup.

In this paper, we propose a high-performance multispectral
demosaicking algorithm, and at the same time, a novel MSFA
pattern suitable for the proposed demosaicking algorithm.
In our proposed algorithm, we interpolate each subsampled



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. , NO. , 2

spectral band by the guided filter (GF) [27], which is a
high-performance edge-preserving filter. The key to high-
performance interpolation by the GF is to obtain an effective
guide image that preserves edges and textures. With this key
in mind, we design our proposed MSFA pattern based on
a generic method [18] to have two desirable properties for
generating the effective guide image from raw MSFA data. In
experiments, we demonstrate that (i) our joint design of the
demosaicking algorithm and the MSFA pattern significantly
improves the demosaicking accuracy and (ii) our proposed al-
gorithm with our proposed MSFA pattern outperforms existing
algorithms and provides better color fidelity compared with a
conventional color imaging system with the Bayer CFA. Not
only theoretical study, we also show some real applications
using a one-shot multispectral camera prototype we built.

The remainder of this paper is organized as follows. In
Section II, we present a short review of existing single-
sensor imaging systems. We describe our joint design of the
demosaicking algorithm and the MSFA pattern in Section III.
Experimental results are reported in Section IV. The configura-
tion of our multispectral camera prototype and its applications
are reported in Section V. Finally, conclusion is presented in
Section VI.

II. RELATED WORKS

Classifying by filter types, we briefly review previously
proposed single-sensor imaging systems.

RGB filters The most popular and widely used CFA is the
Bayer CFA [13], for which numerous demosaicking algorithms
have been proposed [15]–[17]. Although current state-of-
the-art Bayer demosaicking algorithms [28]–[31] can offer
superior performance, these algorithms are specially designed
for the Bayer CFA. The CFAs alternative to the Bayer CFA
have also been proposed [32]–[34]. Universal demosaicking
algorithms for these CFAs have also been developed [35], [36].
However, these universal algorithms are only applicable for the
CFAs with RGB primary filters.

Linear combination of RGB filters Recently, some CFAs
with multiple color filters have been proposed [37], [38]. In
these CFAs, each color filter consists of a linear combination
of the RGB primary filters as below:

Sc(λ) = αSr(λ) + βSg(λ) + γSb(λ), (1)

whereSc(λ) is the resultant filter sensitivity at the wavelength
λ, which is a linear combination of the sensitivities of the
RGB primary filters,Sr(λ), Sg(λ), andSb(λ). Demosaicking
algorithms for an arbitrary CFA including the above CFAs
have also been proposed [39], [40]. Because each color filter
is designed as a linear combination of the RGB primary filters,
these works are not beyond the scope of three-band color
imaging. Also, it is physically infeasible to develop such color
filters.

RGB-White filters Some CFAs contain RGB pixels plus
white (panchromatic) pixels [41]–[43]. The purpose of these
CFAs is to improve the sensor sensitivity, rather than to acquire
multispectral information. Most demosaicking algorithms for
these CFAs apply simple color difference interpolation [42] or
linear demosaicking [43].

RGB-NIR filters A special category of the MSFAs is an
MSFA designed for simultaneous capturing of RGB and near-
infrared (NIR) images [44]–[46]. In [44], [45], the authors
simultaneously optimized the MSFA (more specifically, op-
timized a combination ratio of the RGB and NIR filters to
form each spectral filter) and a linear demosaicking matrix
by describing the whole imaging system in a linear form.
This approach can be generalized for multispectral imaging
in theory. However, as mentioned before, it is physically
infeasible to develop spectral filters described as a linear
combination of other filters. In [46], the authors proposed
a demosaicking algorithm to generate a high-quality RGB
image and one additional band image, typically NIR image.
However, it is not straightforward to extend the algorithm for
multispectral imaging with more than four spectral bands.

Multispectral filters Brauers and Aach proposed an MSFA
with six evenly subsampled narrow-band filters [20]. Ya-
sumaet al. proposed a generalized assorted pixel mosaic that
can capture a seven-band image [22]. Aggarwal and Majumdar
proposed a framework to design uniform MSFAs [23]. In
these works, simple demosaicking algorithms such as bilinear
interpolation of color differences [20], median filtering [21],
and linear demosaicking [22], [23] are applied. Although
these simple algorithms are easily extensible for the MSFA,
their performance is insufficient. As another approach, Baone
and Qi proposed a maximum a posteriori probability (MAP)-
based demosaicking algorithm [24]. However, the MAP-based
algorithm is not practical because it necessarily entails high
computational cost.

The most closely related works to the study described in
this paper are those of Miaoet al. [18], [19]. Miao and Qi
proposed a generic method for generating MSFA patterns [18].
By recursively separating checkerboard patterns, the generic
method generates the MSFA pattern given the number of spec-
tral bands and the sampling densities of each spectral band.
Several works follow this method to develop a demosaicking
algorithm [21], [24]. Miao et al. also proposed the binary
tree-based edge-sensing (BTES) demosaicking algorithm [19],
which is applicable for all the MSFA patterns that can be
generated by the generic method [18]. The BTES algorithm
iteratively performs edge-sensing interpolation to generate a
full multispectral image. Although the generic method and
the BTES algorithm are useful as a general framework, the
performance of the BTES algorithm is insufficient for severely
undersampled raw MSFA data. Additionally, in the generic
method, the authors have not discussed which MSFA pattern
among possible patterns is the best for the BTES algorithm.

Finally, all the works mentioned in this category are not
beyond theoretical ones and have not tested their feasibility in
a real hardware setup.

III. JOINT DESIGN OFMSFA PATTERN AND

DEMOSAICKING ALGORITHM

Fig. 1 (a) shows our proposed MSFA pattern. Fig. 1 (b)
shows the corresponding spectral sensitivities of each spec-
tral band. In this paper, we examine the design of a five-
band MSFA and call the spectral bands R, Or, G, Cy,
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Fig. 1. (a) Our proposed MSFA pattern, (b) spectral sensitivities of each spectral band, and (c) the overall flow of our proposed multispectral demosaicking
algorithm. In our proposed algorithm, we first generate the guide image for the GF from the most densely sampled G band by the interpolation with an
adaptive kernel. The adaptive kernel is estimated from raw MSFA data based on the derivative requirement. Then, the GF is performed to interpolate the G,
Or, and Cy bands. For the interpolation of the R and B bands, we update the guide image to the interpolated Or and Cy band images respectively.

and B bands respectively from the long-wavelength end to
the short-wavelength end. For the spectral sensitivities, we
simply assume uniform Gaussian sensitivities. Generally, in
multispectral imaging, an increasing number of spectral bands
is expected to improve spectral estimation accuracy [47],
[48]. However, it is not necessarily true for the single-sensor
multispectral imaging because sampling densities of each
spectral band in the MSFA become lower if we array more
spectral bands. Therefore, there is a trade-off between the
number of spectral bands and the spatial resolution. It is
also known that the demosaicking performance is affected
by the spectral sensitivities [49]–[52]. Although all of these
components should be considered together, the investigation
of optimal spectral number and spectral sensitivities is beyond
the scope of this paper and our future work. Hereafter, we
describe the MSFA pattern as the MSFA for simple notation.

Fig. 1 (c) shows the overall flow of our proposed multi-
spectral demosaicking algorithm. Our key idea is to use the
GF [27] to interpolate each spectral band. In the GF, the

guide image quality plays a crucial role for high-performance
interpolation. To generate the guide image effectively, we
select our proposed MSFA based on two design requirements:
(i) Density requirement; we maintain the sampling density of
the G band as high as the Bayer CFA, and (ii)Derivative
requirement; we array each spectral band so that derivatives
can be calculated at every pixel location from raw MSFA
data using our proposed derivative calculation method. In our
algorithm, we first generate the effective guide image from
the most densely sampled G band by the interpolation with
an adaptive kernel, which is estimated based on the calculated
derivatives from raw MSFA data. Then, we interpolate the G,
Or, and Cy bands by the GF using the generated guide image
assuming spectral correlations. For the interpolation of the R
and B bands, we respectively update the guide image to the
interpolated Or and Cy band images because closer spectral
bands have a higher spectral correlation.
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TABLE I
THE PROPERTIES OF THE THREEMSFA PATTERNS SHOWN INFIG. 2.

MSFA1 MSFA2 Proposed MSFA

Sampling densities{G,Or,Cy,R,B} { 1
4
, 1
4
, 1
4
, 1
8
, 1
8
} { 1

2
, 1
4
, 1
8
, 1
16

, 1
16

} { 1
2
, 1
8
, 1
8
, 1
8
, 1
8
}

Density requirement ✓ ✓
Derivative requirement ✓ ✓

(f) Proposed MSFA(e) MSFA2(d) MSFA1

(c) Binary tree for
our proposed MSFA

(b) Binary tree for MSFA2

(a) Binary tree 
for MSFA1 

Fig. 2. (a)-(c) Three possible binary trees for a five-band MSFA generated
by the generic method and (d)-(f) the resultant three MSFAs generated from
each binary tree by assigning higher sampling densities in the order of G, Or,
Cy, R, and B bands. (f) is our proposed MSFA.

A. Selection of our proposed MSFA

We select our proposed MSFA from candidate MSFAs
generated by the generic method [18] based on the den-
sity requirement and the derivative requirement. The generic
method generate the MSFAs by recursively separating the
checkerboard pattern based on a binary tree. The binary tree
is defined by the number of spectral bands and the sampling
densities of each spectral band, which are given by users.
Fig. 2 (a)-(c) show the three possible binary trees for a
five-band MSFA. The MSFA is formed by assigning each
spectral band to a leaf of the binary tree. Because it is not
impractical to compare all assigning combinations for each
binary tree, we here assign higher sampling densities in the
order of G, Or, Cy, R, and B bands considering our proposed
demosaicking algorithm assuming spectral correlations and the
guide update strategy. Fig. 2 (d)-(f) show the resultant three
MSFAs including our proposed MSFA (Fig. 2 (f)). We describe
the other two MSFAs as MSFA1 and MSFA2 respectively.

In the density requirement, we maintain the sampling den-
sity of the G band as high as the Bayer CFA to make the
interpolation for the guide image precise. In the derivative
requirement, we calculate derivatives at every pixel location
from raw MSFA data. Almost all existing interpolation algo-
rithms seek to exploit the derivatives (also called gradients) to
interpolate the input data along edge directions. However, we
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Fig. 3. Examples of the diagonal derivative calculation at Or and Cy pixel
locations.

usually cannot calculate the derivatives directly from the raw
MSFA data because different spectral bands are arrayed in a
mosaic pattern. Here, we propose a novel derivative calculation
method from raw MSFA data.

For natural images, spectral bands are well known to be
correlated in high-frequency components [53]. Based on this
fact, we assume that the derivatives of each spectral band are
approximately equivalent. Then, we calculate the derivatives
in diagonal directions as

zu(m,n) = Icum−1,n+1 − Icum+1,n−1, (2)

zv(m,n) = Icvm−1,n−1 − Icvm+1,n+1, (3)

wherezu andzv are the diagonal derivatives at a pixel location
(m,n), Icm,n is a pixel intensity of thec band at the pixel
location (m,n), and cu and cv are corresponding spectral
bands at respective pixel locations. Fig. 3 shows examples
of the diagonal derivative calculation at Or and Cy pixel
locations in our proposed MSFA. In this way, we calculate the
derivatives in the diagonal directions, instead of the standard
horizontal and vertical directions because it is impossible to
array each spectral band to calculate horizontal and vertical
derivatives by the similar way for any five-band MSFA. As
a consequence of our proposed derivative calculation method,
the derivative requirement is that all pixels must have adjacent
diagonal pixels of the same spectral band in each diagonal
direction.

Table I presents a summary of the properties that each
MSFA has. Consequently, only our proposed MSFA satisfies
both the density requirement and the derivative requirement.



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. , NO. , 5

B. Proposed multispectral demosaicking algorithm

In our proposed algorithm, we first generate the guide
image for the GF by interpolating the G band using an
adaptive kernel. The adaptive kernel is a spatially variant
kernel estimated based on image structures, which is adaptive
to edges and textures [54]. We estimate the adaptive kernel in
a similar way with the original method [54] as

kxp(x) = exp

[
−
xTHTC−1

xp
Hx

2h2µxp
2

]
, (4)

whereCxp is the covariance matrix of the Gaussian kernel,
h stands for a global smoothing parameter,µxp is a local
smoothing parameter, which controls the kernel size at each
pixel location, andH is a rotation matrix that aligns the pixel
coordinates with the direction of the derivatives. Specifically,
we use the rotation matrix, which rotates the pixel coordinates
by 45 degrees. The covariance matrixCxp is estimated based
on the diagonal derivatives around the locationxp as

C−1
xp

=
1

|Nxp |
∑

xj∈Nxp

zu(xj)zu(xj)
∑

xj∈Nxp

zu(xj)zv(xj)∑
xj∈Nxp

zu(xj)zv(xj)
∑

xj∈Nxp

zv(xj)zv(xj)

 , (5)

wherezu andzv are the diagonal derivatives calculated from
the raw MSFA data,Nxp denotes neighbor pixels around the
location xp, and |Nxp | is a normalizing factor, which is the
number of pixels included inNxp .

Based on the adaptive kernel weight, the guide image is
interpolated as

Igxp
=

1

Wxp

∑
xi∈ωxp

kxp(xi − xp)MxiI
g
xi
, (6)

where Igxp
stands for the interpolated G pixel value at the

locationxp, Mxi signifies a binary mask at the locationxi,
kxp(x) denotes the adaptive kernel weight,ωxp represents a
window centered at the locationxp, andWxp is a normalizing
factor that is the sum of the kernel weights. The binary mask
Mxi

is set to one if the G band data is sampled at the
associated pixel location and zero for other cases.

Then, we interpolate each spectral band by the GF [27].
The generated G band guide image is used for interpolating
the G, Or, and Cy bands1. For the interpolation of the R and
B bands, we update the guide image to the interpolated Or
and Cy band images respectively.

In the GF, the filter output in each local window is modeled
by a linear transformation of the guide image as

qxi = axpIxi + bxp , ∀xi ∈ ωxp , (7)

whereωxp represents a window centered at the pixel location
xp, xi is a pixel location in the window,qxi is the filter
output at the locationxi, andIxi is the intensity of the guide
image at the locationxi. The linear coefficients (axp , bxp ) for

1We also apply the GF to the G band because if a smoothing parameter
ϵ ̸= 0 in Eq. (8), the result G band image is not identical to the guide image.

each window are estimated by minimizing the following cost
function:

E(axp , bxp) =
∑

xi∈ωxp

Mxi((axpIxi+bxp−pxi)
2+ϵa2xp

),

(8)

where pxi is the intensity of the input subsampled data at
the locationxi, Mxi is the binary mask at the locationxi,
and ϵ is a smoothing parameter. Because the locationxi

is involved in all windows that contain the locationxi, the
original GF generates the final output at the locationxi by
simply averaging the results of each window. Instead, we
introduce a weighting averaging based on the cost as

qxi = āxiIxi + b̄xi , (9)

where

āxi =
1

Wxi

∑
xp∈ωxi

exp
(
−αE

(
axp , bxp

))
axp , (10)

b̄xi =
1

Wxi

∑
xp∈ωxi

exp
(
−αE

(
axp , bxp

))
bxp , (11)

whereα is a parameter that controls the weighting andWxi

is the normalizing factor, which is the sum of the weights.

IV. EXPERIMENTAL RESULTS

A. Datasets and experimental settings

In experiments, we used two multispectral image datasets:
the CAVE dataset [22], [56] and our dataset. Both datasets
were captured using a monochrome camera with a Varispec
liquid crystal tunable filter [7], [57]. The CAVE dataset
consists of 31-band multispectral images of 32 scenes. The
31-band images are acquired at every 10 nm from 400nm to
700nm. The image size is 512× 512. The CAVE dataset is
often used as a standard multispectral image dataset. In the
CAVE dataset, many images are dominated by smooth objects
or backgrounds. Our dataset consists of 31-band images, which
are acquired at every 10 nm from 420nm to 720nm2. The orig-
inal image size of our 31-band images is 2048× 2048. From
the original high-resolution images, we generated clipped
image dataset of 30 scenes as shown in Fig. 4. The image
size of the clipped images is 500× 500. We selected the
clipped regions with rich textures and colorful objects. This is
because the main challenges of the single-sensor multispectral
imaging are in the texture and colorful regions. For smooth
regions, demosaicking algorithms generally work well for both
the three-band Bayer CFA and the proposed five-band MSFA.
For colorless regions, both typical three-band imaging and our
proposed five-band imaging can reproduce accurate colors.

Ground-truth five-band images were simulated from the
31-band images. Then, the mosaicking and demosaicking
processes were performed. To evaluate colorimetric accuracy
in the sRGB domain, we estimated spectral reflectance images
from the demosaicked five-band images and converted the
reflectance images to sRGB images using xyz color matching

2We removed 400nm and 410nm because they are unreliable as a result of
the very low sensitivities of the Varispec filter in 400nm and 410nm.
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Fig. 4. Our multispectral image dataset.

TABLE II
THE AVERAGE PSNR, CPSNR, DELTAE, AND CIEDE2000 [55]PERFORMANCE OF DIFFERENT DEMOSAICKING ALGORITHMS ANDMSFAS. THE

VALUES IN PARENTHESES REPRESENT THE STANDARD DEVIATION.

Light Data MSFA
pattern Algo.

PSNR
R

PSNR
Or

PSNR
G

PSNR
Cy

PSNR
B

5band
PSNR
Ave.

sRGB
PSNR
Ave.

CPSNR DeltaE
CIEDE
2000

D65 CAVE

MSFA1
BTES

42.59 42.04 40.90 40.28 40.54 41.27 36.63 36.43 2.67 3.54
(4.43) (4.29) (4.22) (4.41) (4.72) (4.25) (3.88) (3.87) (1.07) (1.14)

Proposed
44.70 42.92 41.43 41.27 41.78 42.42 37.42 37.24 2.52 3.33
(5.02) (5.00) (4.20) (4.71) (4.97) (4.59) (4.05) (4.06) (1.01) (1.01)

MSFA2
BTES

39.26 42.11 46.54 37.84 37.30 40.61 36.83 35.61 2.92 3.76
(4.11) (4.32) (4.42) (4.35) (4.47) (4.16) (3.84) (3.86) (1.15) (1.15)

Proposed
43.59 45.02 45.71 43.09 41.81 43.85 39.08 38.65 2.44 3.20
(4.62) (4.57) (4.25) (5.00) (4.83) (4.49) (3.94) (3.98) (0.93) (0.84)

Proposed
BTES

42.60 39.41 46.54 37.83 40.46 41.37 36.94 35.81 2.85 3.81
(4.45) (4.21) (4.42) (4.31) (4.70) (4.26) (3.83) (3.87) (1.17) (1.25)

Proposed
45.36 44.76 48.06 44.68 43.96 45.36 40.00 39.38 2.35 3.09
(4.49) (4.70) (4.80) (4.86) (4.82) (4.56) (3.86) (3.89) (0.95) (0.87)

D65 Our

MSFA1
BTES

38.30 40.84 39.72 40.14 39.24 39.65 35.79 35.41 1.86 2.31
(3.99) (4.27) (4.50) (4.80) (4.30) (4.15) (3.57) (3.52) (0.55) (0.70)

Proposed
42.17 41.30 40.34 40.49 42.12 41.28 36.74 36.19 1.78 2.20
(4.94) (5.05) (4.60) (4.87) (4.86) (4.56) (3.82) (3.75) (0.55) (0.69)

MSFA2
BTES

34.71 40.81 45.51 36.31 35.49 38.57 35.40 34.10 2.31 2.74
(3.60) (4.14) (5.00) (4.58) (3.97) (3.97) (3.48) (3.45) (0.72) (0.88)

Proposed
42.28 43.83 44.63 42.03 41.99 42.95 38.34 37.75 1.68 2.05
(4.89) (4.97) (4.66) (4.92) (4.73) (4.47) (3.76) (3.67) (0.53) (0.64)

Proposed
BTES

38.27 37.05 45.51 36.34 39.11 39.26 35.58 34.28 2.07 2.58
(3.94) (4.01) (5.00) (4.57) (4.27) (4.09) (3.59) (3.46) (0.63) (0.83)

Proposed
43.82 43.28 46.57 42.92 43.62 44.04 39.00 38.07 1.56 1.88
(5.41) (5.61) (5.99) (5.20) (5.19) (5.09) (4.02) (3.92) (0.52) (0.61)

functions and the xyz to sRGB transformation matrix with
a correct white point [58], [59]. We used a linear model
based spectral reflectance estimation method [3], [9] with eight
spectral basis functions and the regularization parameter = 0.1.
The spectral basis functions were calculated using PCA from
1269 Munsell color samples [60]. We used the CIE A (in-
candescence), CIE D65 (daylight), and CIE F12 (fluorescent)
illuminants [58], [59] for the evaluation. We evaluated the
PSNR, CPSNR, DeltaE (Euclidean distance in Lab space), and
CIEDE2000 [55] performance for numerical evaluation.

For our proposed algorithm, we used the smoothing param-
etersh = 1/255 andµxp = 1 in Eq. (4), the7×7 window for
the covariance matrix estimation in Eq. (5), the3× 3 window
for guide image generation in Eq. (6), the9 × 9 window for
the GF and the smoothing parameterϵ = 0 in Eq. (8), and the
weighting parameterα = 3000 in Eq. (10) and Eq. (11). Pixel
intensities were normalized from 0 to 1 in all processes.

B. Comparison of multispectral demosaicking algorithms for
different MSFAs

We first compare our proposed algorithm with the BTES
algorithm [19] for the three MSFAs shown in Fig. 2. Table II
presents the numerical performance of the algorithms for the
three MSFAs under the CIE D65 illuminant. Our proposed al-
gorithm with our proposed MSFA generally provides superior
results. For the Or band, the MSFA2 outperforms ours because
the MSFA2 has the higher sampling density of the Or band
in addition to the high sampling density of the G band. Fig. 5
shows a visual comparison3 of the guide images generated
using our proposed algorithm for the three MSFAs. The
MSFA2 only satisfies the density requirement. We performed
simple edge-sensing interpolation to generate the guide image
because the adaptive kernel is not available. Consequently,
severe artifacts arise in edges. The MSFA1 only satisfies

3Gamma correction is applied merely for display in all result images in
this paper.
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Character (sRGB)

Ground truth (G band)

MSFA2 with only density requirement

MSFA1 with only derivative requirement

Pro. MSFA with both requirements

Fig. 5. Visual comparison of the guide images generated by our proposed algorithm using different MSFAs.

CAVE dataset:
Egyptian statue (sRGB)

Ground truth (Cy band)

MSFA1 + BTES

MSFA1 + Pro. Algo.

MSFA2 + BTES

MSFA2 + Pro. Algo.

Pro. MSFA + BTES

Pro. MSFA + Pro. Algo.

Our dataset:
Can (sRGB)

Ground truth (R band)

MSFA1 + BTES

MSFA1 + Pro. Algo.

MSFA2 + BTES

MSFA2 + Pro. Algo.

Pro. MSFA + BTES

Pro. MSFA + Pro. Algo.

Fig. 6. Visual comparison of the demosaicked images using different MSFAs and demosaicking algorithms.

the derivative requirement. Compared with the MSFA1, the
artifacts in edges are reduced because the adaptive kernel is
useful for the guide image generation. However, the result
guide image is blurred because of the low sampling density of
the G band. In contrast, our proposed MSFA satisfies the both
requirements. The guide image is effectively generated from
the G band with the high-sampling density using the adaptive
kernel. Fig. 6 shows a visual comparison of the demosaicked
images. These results demonstrate the effectiveness of our
joint design of the MSFA and demosaicking algorithm, which
markedly improves the demosaicking performance.

C. Comparison of multispectral imaging with color imaging

We next compare the five-band multispectral imaging with
the conventional three-band color imaging using the Bayer
CFA. For the three-band Bayer CFA, the similar process flow
as the five-band MSFA was simulated to generate the sRGB
images, assuming the spectral sensitivities of a real color
camera. We used the adaptive homogeneity-directed (AHD)
algorithm [28] and the local polynomial approximation (LPA)
algorithm [29] for the Bayer demosaicking. Both algorithms
are well known high-performance Bayer demosaicking algo-
rithms.

Table III presents a summary of numerical performance
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TABLE III
THE AVERAGE PSNR, CPSNR, DELTAE AND CIEDE2000 [55]PERFORMANCE OF THE CONVENTIONAL COLOR IMAGING WITH THEBAYER CFA AND

THE FIVE-BAND MULTISPECTRAL IMAGING . FOR THE BTES ALGORITHM , WE SELECTED THE BESTMSFA (MSFA1) IN TERMS OF THECIEDE2000
METRIC IN TABLE II. T HE VALUES IN PARENTHESIS REPRESENT THE STANDARD DEVIATION.

Light Data MSFA
pattern Algo.

PSNR
R

PSNR
Or

PSNR
G

PSNR
Cy

PSNR
B

5band
PSNR
Ave.

sRGB
PSNR
Ave.

CPSNR DeltaE
CIEDE
2000

A CAVE

Bayer
AHD

- - - - - - 36.60 31.59 2.49 2.55
- - - - - - (3.66) (3.64) (1.24) (0.97)

LPA
- - - - - - 37.46 32.61 2.31 2.46
- - - - - - (3.54) (3.54) (1.07) (0.91)

MSFA1 BTES
39.98 42.25 45.20 49.59 54.48 46.30 36.34 35.48 1.91 2.49
(4.44) (4.33) (4.18) (4.30) (4.59) (4.21) (3.84) (3.74) (0.86) (1.03)

Proposed Proposed
43.00 45.04 52.39 54.13 59.15 50.74 39.98 38.52 1.71 2.19
(4.42) (4.60) (4.73) (4.88) (4.74) (4.51) (3.83) (3.76) (0.73) (0.84)

A Our

Bayer
AHD

- - - - - - 33.36 27.58 3.29 2.62
- - - - - - (3.71) (3.90) (1.30) (0.87)

LPA
- - - - - - 34.92 29.41 2.68 2.19
- - - - - - (3.66) (3.85) (1.01) (0.66)

MSFA1 BTES
35.77 41.45 44.45 49.68 53.56 44.98 35.36 34.72 1.61 1.74
(3.97) (4.26) (4.34) (4.71) (4.27) (4.08) (3.52) (3.57) (0.50) (0.54)

Proposed Proposed
41.61 43.99 51.21 52.48 57.92 49.44 38.49 37.59 1.46 1.49
(5.09) (5.34) (5.71) (4.87) (4.44) (4.66) (3.71) (3.56) (0.47) (0.49)

D65 CAVE

Bayer
AHD

- - - - - - 39.87 38.50 2.55 3.23
- - - - - - (3.85) (3.87) (1.02) (0.90)

LPA
- - - - - - 40.60 39.20 2.44 3.13
- - - - - - (3.70) (3.75) (0.91) (0.85)

MSFA1 BTES
42.59 42.04 40.90 40.28 40.54 41.27 36.63 36.43 2.67 3.54
(4.43) (4.29) (4.22) (4.41) (4.72) (4.25) (3.88) (3.87) (1.07) (1.14)

Proposed Proposed
45.36 44.76 48.06 44.68 43.96 45.36 40.00 39.38 2.35 3.09
(4.49) (4.70) (4.80) (4.86) (4.82) (4.56) (3.86) (3.89) (0.95) (0.87)

D65 Our

Bayer
AHD

- - - - - - 36.58 34.99 2.44 2.73
- - - - - - (3.46) (3.46) (0.87) (0.97)

LPA
- - - - - - 38.08 36.31 2.07 2.29
- - - - - - (3.48) (3.60) (0.74) (0.76)

MSFA1 BTES
38.30 40.84 39.72 40.14 39.24 39.65 35.79 35.41 1.86 2.31
(3.99) (4.27) (4.50) (4.80) (4.30) (4.15) (3.57) (3.52) (0.55) (0.70)

Proposed Proposed
43.82 43.28 46.57 42.92 43.62 44.04 39.00 38.07 1.56 1.88
(5.41) (5.61) (5.99) (5.20) (5.19) (5.09) (4.02) (3.92) (0.52) (0.61)

F12 CAVE

Bayer
AHD

- - - - - - 36.13 30.63 4.06 3.99
- - - - - - (3.41) (3.84) (1.59) (1.32)

LPA
- - - - - - 36.57 30.72 3.97 3.94
- - - - - - (3.35) (3.83) (1.53) (1.29)

MSFA1 BTES
63.47 51.13 53.00 60.34 64.78 58.54 35.83 34.15 2.48 2.81
(4.21) (4.17) (4.10) (4.25) (4.61) (4.13) (3.43) (3.51) (0.92) (1.00)

Proposed Proposed
68.33 54.45 59.56 64.67 67.85 62.97 38.73 35.35 2.43 2.77
(4.34) (4.32) (4.27) (4.45) (4.24) (4.18) (3.33) (3.63) (0.80) (0.84)

F12 Our

Bayer
AHD

- - - - - - 34.64 29.57 3.55 2.71
- - - - - - (3.39) (3.26) (1.21) (0.73)

LPA
- - - - - - 35.94 31.15 2.97 2.32
- - - - - - (3.24) (3.07) (0.94) (0.55)

MSFA1 BTES
59.14 50.10 51.62 59.57 63.39 56.76 36.13 35.78 1.82 1.85
(3.87) (4.07) (4.30) (4.70) (4.22) (4.02) (3.19) (3.08) (0.50) (0.51)

Proposed Proposed
65.06 52.48 57.34 62.07 65.10 60.41 38.34 37.28 1.86 1.81
(4.42) (4.56) (4.89) (4.46) (3.68) (3.89) (3.04) (2.74) (0.46) (0.44)

under the CIE A, CIE D65, and CIE F12 illuminants. In most
cases, our proposed MSFA and demosaicking algorithm pro-
duces the best results. Especially, our proposed multispectral
imaging markedly outperforms conventional color imaging for
the CIE A and CIE F12 illuminants because it is difficult to
estimate the spectral reflectance images accurately from only
three-band images under the non-uniform CIE A and CIE
F12 illuminants. Fig. 7 shows the visual comparison of the
resultant sRGB images. The lower half of the image shows the
corresponding color difference (CIEDE2000 [55]) map, where
brighter values represent larger colorimetric errors. These
results demonstrate that our proposed MSFA and algorithm

reproduces the sRGB images more accurately than the con-
ventional color imaging system does. Fig. 8 shows the visual
comparison of the resultant sRGB images for the resolution
chart. These results demonstrate that our proposed MSFA and
algorithm can generate the image without considerable loss
of resolution compared with the Bayer CFA, while the BTES
algorithm generates the severely blurred image.

V. PROTOTYPE

We built a one-shot multispectral camera prototype to eval-
uate the feasibility of our proposed MSFA and demosaicking
algorithm in a real hardware setup. Fig. 9 shows the config-
uration of our multispectral camera prototype. The prototype
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CAVE: Feather (CIE A) Bayer + AHD Bayer + LPA MSFA1 + BTES Pro. MSFA + Pro. Algo.

Our: Pen (CIE D65) Bayer + AHD Bayer + LPA MSFA1 + BTES Pro. MSFA + Pro. Algo.

Fig. 7. Visual comparison of sRGB images. The lower half of the image shows the color difference (CIEDE2000 [55]) map, where brighter values represent
larger colorimetric errors.

Ground truth (CIE D65) Bayer + AHD Bayer + LPA MSFA1 + BTES Pro. MSFA + Pro. Algo.

Fig. 8. Visual comparison of sRGB images for the resolution chart.
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Fig. 9. Configuration of our multispectral camera prototype.

consists of the five-band image sensor (2/3 inch CMOS) and
the camera system including a FPGA board, which is linked
to the camera by a camera link cable. We named the image
sensor Evaluation chip of MUltispectral Demosaicking Algo-
rithm (EMUDA). The EMUDA has our proposed five-band
MSFA. We added the Or and Cy bands to conventional RGB
bands. Spectral filters of the Or and Cy bands were selected
from a set of currently available filters. The camera system
executes image processing algorithms including our proposed
demosaicking, white balancing, and sRGB transformation. We
confirmed that our multispectral camera prototype can capture

a full-HD five-band multispectral video and display the sRGB
images at 30 fps without considerable loss of resolution.

We evaluated our prototype for relighting and spectral
reflectance estimation. Fig. 10 shows the comparison of re-
lighting results. Fig. 10 (a) is the input image captured by
our prototype under a fluorescent illuminant. From the input
image, we generated the image under the CIE D65 illuminant
by relighting, where the spectral reflectance image is estimated
and rendered to the image under the CIE D65 illuminant.
Fig. 10 (b) is the relighting result of conventional three-band
color imaging, where we only used RGB bands among the
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(a) Input (fluorescence) (b) 3-band relighting (D65) (c) 5-band relighting (D65) (d) 31-band ground truth (D65)

Fig. 10. Comparison of relighting results between our proposed five-band multispectral imaging and the conventional three-band color imaging.
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(a) Spectral reflectance estimation results on the blue uniform.
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(b) Spectral reflectance estimation results on the yellow uniform.

Fig. 11. Comparison of spectral reflectance estimation between our proposed five-band multispectral imaging and the conventional three-band color imaging.

five bands of our prototype. Fig. 10 (c) is the relighting result
of our proposed five-band imaging. Fig. 10 (d) is the ground
truth generated from the 31-band multispectral image captured
by using the Varispec tunable filter [7], [57]. These results
demonstrate that our proposed five-band imaging can relight
the image more accurately than the conventional color imaging
on the wings of the butterfly.

Fig. 11 shows the comparison of spectral reflectance es-
timation on the blue and yellow uniforms. The blue line is
the 31-band ground truth. The red dash line is the result of
using all five bands of our prototype. The green dot line is
the result of using only RGB bands of our prototype. Fig. 11
demonstrate that our proposed five-band imaging can estimate
the spectral reflectance more accurately than the conventional
color imaging.

VI. CONCLUSION

In this paper, we proposed and built the practical one-
shot multispectral imaging system using the single image
sensor. Our proposed system is based on the joint design
of our proposed MSFA and high-performance demosaicking
algorithm. In our algorithm, we interpolate each spectral band
by the GF [27]. To generate an effective guide image from
raw MSFA data, we designed our proposed MSFA based on
the density requirement and the derivative requirement. The
density requirement ensures the high sampling density of the
G band. The derivative requirement ensures the calculation of
the adaptive kernel from raw MSFA data. In our algorithm,
we first generate the effective guide image from the G band
with the high sampling density using the adaptive kernel.
Subsequently, we apply the GF to interpolate each spectral

band. From our experiments, we demonstrated that (i) our joint
design of the demosaicking algorithm and the MSFA based on
the two requirements markedly improves the total performance
of the system and (ii) our proposed algorithm outperforms
existing algorithms and provides better color fidelity than a
conventional color imaging system with the Bayer CFA.

Not only theoretical study, we also built the multispectral
camera prototype and confirmed the feasibility of our proposed
algorithm and MSFA in an actual hardware setup. Our mul-
tispectral camera prototype can capture a full-HD five-band
multispectral video and display the sRGB images at 30 fps
without significant loss of resolution. We also demonstrated
the real applications of our prototype for relighting and spec-
tral reflectance estimation. Our proposed system outperforms
the conventional color imaging system especially for objects
with highly color-saturated regions.
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