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Abstract—Reconstructing an object’s high-quality 3D shape with inherent spectral reflectance property, beyond typical
device-dependent RGB albedos, opens the door to applications requiring a high-fidelity 3D model in terms of both geometry and
photometry. In this paper, we propose a novel Multi-View Inverse Rendering (MVIR) method called Spectral MVIR for jointly
reconstructing the 3D shape and the spectral reflectance for each point of object surfaces from multi-view images captured using a
standard RGB camera and low-cost lighting equipment such as an LED bulb or an LED projector. Our main contributions are twofold:
(i) We present a rendering model that considers both geometric and photometric principles in the image formation by explicitly
considering camera spectral sensitivity, light’s spectral power distribution, and light source positions. (ii) Based on the derived model,
we build a cost-optimization MVIR framework for the joint reconstruction of the 3D shape and the per-vertex spectral reflectance while
estimating the light source positions and the shadows. Different from most existing spectral-3D acquisition methods, our method does
not require expensive special equipment and cumbersome geometric calibration. Experimental results using both synthetic and
real-world data demonstrate that our Spectral MVIR can acquire a high-quality 3D model with accurate spectral reflectance property.

Index Terms—Inverse rendering, multi-view 3D reconstruction, spectral reflectance estimation
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1 INTRODUCTION

3D shape and spectral reflectance are inherent geometric
and photometric characteristics of an object. Typically,

the photometric property of an object’s 3D model recon-
structed from imagery is represented as color in an RGB
space. However, RGB values do not represent the inherent
physical property of the object since they depend on the
spectral sensitivity of a camera. In contrast, the spectral
reflectance, which is defined in wavelength by wavelength,
is inherent to the object and can provide much richer in-
formation about the object’s surface compared with device-
dependent RGB values. Therefore, acquiring a high-quality
3D model with the spectral reflectance property is valuable
for many applications requiring high-fidelity information
in terms of both geometry and photometry, such as digital
archiving [1], [2], artwork authentication [3], material classi-
fication [4], [5], plant modeling [6], and relighting [7].

3D reconstruction and spectral reflectance estimation are
well-studied research topics in computer vision. However,
these two research fields have progressed separately. 3D
reconstruction from multi-view images is becoming a basic
tool owing to many useful softwares based on structure
from motion (SfM) and multi-view stereo (MVS) [8], [9], [10].
However, SfM and MVS methods only focus on geomet-
ric 3D reconstruction. Some advanced methods [11], [12],
[13], including multi-view inverse rendering (MVIR) [14],
[15], jointly estimate a 3D shape and surface reflectance by
combining the SfM and MVS pipeline with photometric 3D
reconstruction using shading information. However, these
methods usually focus on estimating RGB albedos, which
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are device-dependent and not inherent to the object. On the
other hand, the spectral reflectance of an object is recovered
based on multispectral imaging methods [16], [17], [18],
[19], [20], [21], [22]. However, these methods commonly
focus on 2D multispectral imaging and ignore the geometric
relationship between the object and the light source.

Some studies have proposed a system for spectral-3D
data acquisition [23], [24], [25], [26], [27], [28]. However,
existing systems require expensive special equipment, such
as a multispectral camera [25], [27], [28] and a multispec-
tral light source [23], [24], [26], or they need cumbersome
geometric calibration for each considered setup [23], [25]. In
addition, most of existing systems simply add spectral in-
formation obtained by a multispectral setup to a separately
estimated 3D model and do not consider the geometric
information for spectral reflectance estimation, which causes
the baked-in artifacts of the shading and the shadows.

A recently proposed state-of-the-art system called Pro-
Cam SSfM [29] has realized geometric-calibration-free ac-
quisition of the spectral-3D data by using an off-the-shelf
RGB camera and LED projector. This system combines
multi-view structured-light and SfM techniques to simul-
taneously estimate the 3D points, the camera poses, and the
projector poses. Then, it incorporates the geometric relation-
ship between the 3D points and the projector positions to
estimate the spectral reflectance while eliminating the effect
of the shading and the shadows. By this manner, the 3D
reconstruction and the spectral reflectance estimation are
performed as separated steps assuming that the active 3D
scanning by structured light provides enough high-quality
3D model. However, the quality of the estimated 3D model
is in fact restricted by the resolution of the projector, which
is usually much lower than that of the camera.

In this paper, we propose a novel method called Spectral
MVIR for jointly reconstructing a detailed 3D mesh model
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Fig. 1. Our Spectral MVIR framework using an example camera and light setup. Using multi-view images captured with a standard RGB camera
and a low-cost smart LED bulb, we first estimate camera poses and an initial mesh model based on SfM and MVS. Then, we jointly optimize
each vertex’s 3D position and spectral reflectance while estimating light source positions. This framework enables geometric-calibration-free and
high-quality spectral-3D data acquisition.

and the spectral reflectance for each mesh vertex. Figure 1
shows the overview of the Spectral MVIR framework with
an example camera and light setup. To capture multi-view
input images, we use a standard RGB camera and a low-cost
smart LED bulb that can emit several types of illumination
with different spectral power distributions1. Using the cap-
tured input images, we first estimate camera poses and an
initial mesh model based on SfM and MVS, and then jointly
optimize each vertex’s 3D position and spectral reflectance
by minimizing multi-view and multispectral rendering er-
rors. Our main contributions are summarized as follows.

• We present an image rendering model consider-
ing the photometric relationship among illumina-
tion’s spectral power distribution, object’s spectral
reflectance, and camera’s spectral sensitivity. We also
model the geometric relationship between the ob-
ject’s surface and the light source position, where we
adopt a near point light model, which is suitable for
low-cost LED-based multispectral data acquisition.
Using the derived rendering model, we can explicitly
consider the effect of the shading and the shadows on
the spectral reflectance estimation.

• Based on the derived rendering model, we propose
Spectral MVIR to jointly optimize each mesh vertex’s
3D position and spectral reflectance while estimating
the light source positions for each input image. This
joint optimization approach makes our system free
from geometric calibration and applicable to less-
constrained input images captured using an RGB
camera and an LED light source.

Experimental results using both synthetic and real data

1. Note that, instead of a smart LED bulb, we can use separate light
sources with arbitrary positions for our method.

demonstrate that our proposed Spectral MVIR can recon-
struct a higher-quality 3D model than an existing baseline
MVS method while simultaneously acquiring accurate spec-
tral reflectance information. It is also validated that our joint
reconstruction outperforms the simple combination of an
MVS method and a spectral reflectance estimation method
in terms of both 3D model quality and spectral reflectance
accuracy. Furthermore, we apply Spectral MVIR to the initial
3D model obtained by Pro-Cam SSfM [29], where an LED
projector is used as a light source, and demonstrate that our
joint reconstruction derives a refined 3D model by exploit-
ing the shading information observed by the camera, which
has a much higher pixel resolution than the projector. We
also show the application of spectral-3D relighting, which
reproduces the image under an arbitrary light position and
spectral power distribution.

2 RELATED WORK

Multispectral Imaging Systems: Many software-based [30],
[31], [32], [33], [34], [35] and hardware-based [16], [17],
[18], [19], [20], [21], [22] systems have been proposed for
multispectral imaging to recover accurate spectral infor-
mation. Among these systems, lighting-based systems [18],
[19], [21], [36] have demonstrated a better trade-off between
accuracy and cost since they can observe multispectral
measurements using a standard RGB camera without any
hardware modification by temporally changing illumination
spectrum. However, existing lighting-based systems focus
on 2D multispectral imaging and do not take the geometric
relationship between the object surface and the light source
position into account. This means that the shading and the
shadow effects remain in the estimated spectral reflectance.

Spectral-3D Acquisition Systems: There also exist some
systems for spectral-3D model acquisition. One intuitive



approach is to apply an SfM and MVS pipeline using multi-
view multispectral images to generate a point cloud with
spectral information [6], [24], [28], [37]. Another approach is
to combine multispectral imaging and photometric stereo to
estimate dense surface normals and the spectral reflectance
using the images captured under different light source po-
sitions [26], [27], [38]. Active 3D scanning, such as a laser
scanner [25], a ToF camera [39], and structured light [23],
[40], is also combined with multispectral imaging for ob-
taining a high-quality 3D model with spectral information.
However, the above-mentioned systems rely on expensive
special equipment, such as a multispectral camera [6], [25],
[27], [28], [37], [38], [40] and a multispectral light source [23],
[24], [26], or require dedicated geometric calibration for each
considered system [23], [25], [38], [39], [40].

A state-of-the-art system called Pro-Cam SSfM [29]
has recently been proposed to realize low-cost spectral-
3D data acquisition using an RGB camera and an off-the-
shelf projector. Although this system is based on a careful
data acquisition procedure that moves the camera and the
projector alternately, it achieves geometric-calibration-free
spectral-3D scanning by combining multi-view structured-
light and SfM techniques. In Pro-Cam SSfM, the spectral
reflectance estimation is separately performed after the 3D
reconstruction assuming that the obtained 3D model with
the structured light is sufficiently high quality. However, in
fact, the quality of the estimated 3D model is limited by
the resolution of the projector (i.e. structured light pattern),
which is low compared with the resolution of the camera,
resulting in the lack of detailed surface shapes.

Advantages of Spectral MVIR: Compared with existing
systems, our system based on Spectral MVIR has several
advantages. First, it only requires a standard RGB camera
and a low-cost lighting device such as an LED bulb to
capture input images. Second, the data acquisition is more
convenient since our system is geometric-calibration-free
and allows hand-held image capturing. Third, the 3D shape
and the spectral reflectance can be obtained precisely by
jointly optimizing them while estimating the light positions
and considering the effect of shading and shadows. Since
Spectral MVIR can fully exploit a high camera resolution,
more detailed shapes can be obtained when it is applied to
the initial 3D model obtained with Pro-Cam SSfM.

3 PROPOSED SPECTRAL MVIR
In this section, we detail our Spectral MVIR, which jointly
estimates a detailed 3D mesh and the spectral reflectance for
each mesh vertex from multi-view images. We here explain
each step of Spectral MVIR assuming the setup using an
LED bulb as a light source, as shown in Fig. 1. We will
demonstrate the results using an LED projector later in the
experimental result part.

3.1 Data Acquisition
As shown in Fig. 1, we use a standard RGB camera and
a smart LED bulb to capture multi-view input images. We
exploit the smart LED bulb as our light source because of
two reasons: (i) It can emit several types of illumination with
different spectral power distributions and thus can be used

for multispectral observations; (ii) It is very low cost (less
than twenty dollars). We fix the camera and the LED bulb on
a plate and capture the images by moving the plate around
an object while changing the illumination spectrum. Please
note that our method does not require exactly the same
viewpoint images under different illumination spectrum.
Thus, hand-held image acquisition is also allowed.

3.2 Camera Pose Estimation and Initial Reconstruction
Camera pose estimation and dense point cloud reconstruc-
tion is firstly performed by a standard SfM and MVS
pipeline [8], [9], [10]. As our method needs an initial mesh
for camera visibility and cast shadow calculation, surface
reconstruction [41], [42] is then applied to the dense point
cloud to generate a mesh model.

The visibility of each mesh vertex from each camera is
then checked using the estimated camera poses by SfM. If
the vertex i is reprocjected into the view frustum of a camera
and its sight ray is not occluded by any other mesh triangle,
this vertex is considered as visible from this camera. The
camera which is visible from i-th vertex is added to the
visible camera set V(i). Finally, the initial coarse mesh is
subdivided by

√
3-subdivision [43] to obtain a sufficiently

high-resolution mesh model for shape refinement.

3.3 Joint Reconstruction of 3D Shape, Spectral Re-
flectance, and Light Source Positions
The joint optimization of the 3D shape and the spectral re-
flectance is then performed while simultaneously estimating
the light source positions. The cost function is expressed as

arg min
X,A,P

Eren(X,A,P ) + γ1Essm(A) + γ2Epsm(X,A)

+ γ3Egsm(X),
(1)

where Eren, Essm, Epsm, and Egsm represent a rendering
term, a spectral smoothness term, a photometric smoothness
term, and a geometric smoothness term, respectively. The
parameters γ1, γ2 and γ3 represent the weights to balance
each term’s influence. The optimization parameters are de-
scribed as follows:

• X = {x1, ...,xNv} is the set of 3D vertex positions
xi ∈ R

3, where Nv is the total number of vertexes.
• A = {α1, ...,αNv} is the set of weight vectors for

spectral reflectance basis αi ∈ R
Nb , where Nb is the

number of basis functions. We represent the spectral
reflectance as the weighted sum of a small number
of spectral basis functions, as we will explain later.

• P = {p1, ...,pNc} is the set of light source positions
pc ∈ R

3, where Nc is the total number of camera
viewpoints.

In what follows, we detail each term of Eq. (1).

3.3.1 Rendering Term
The rendering term Eren evaluates the differences between
observed and rendered pixel intensities. The cost function is
described as

Eren(X,A,P ) =
Nv∑
i

∑
c∈V(i)

‖yi,c
obs − y(xi,αi,pc)‖2

|V(i)| , (2)
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where V(i) is the visible camera set for i-th vertex and
yi,c
obs ∈ R

3 is the observed RGB intensity vector for the
pixel corresponding to the projection of i-th vertex to c-th
viewpoint’s image. y ∈ R

3 is the corresponding rendered
intensity, which is derived based on our rendering model as
detailed below.

As illustrated in Fig. 2, in our setup, each viewpoint’s
image is captured using one LED light source. By assuming
linear camera responses, the intensity y of n-th camera
channel for i-th vertex captured from c-th camera viewpoint
is modeled as

yi,c,n = mi,c
s si,c

∫
Ωλ

cn(λ)lc(λ)ri(λ)dλ, (3)

where ri(λ) is the spectral reflectance for i-th vertex, lc(λ)
is the illumination’s spectral distribution for c-th viewpoint,
and cn(λ) is the camera spectral sensitivity for n-th channel
(n ∈ {R,G,B}), λ represents the wavelength, and Ωλ is the
target wavelength range, which is set to [400nm, 700nm].

Unlike conventional 2D multispectral imaging, our ren-
dering model considers the shadow mask mi,c

s and the shad-
ing factor si,c, which can be calculated from the geometric
relationship between the mesh vertex and the light source
position. As illustrated in Fig. 2, the shadow mask mi,c

s

is defined as a binary value determining whether the ray
from the light source position pc to i-th vertex position xi

is occluded (mi,c
s = 0) or not (mi,c

s = 1). The shading factor
si,c is expressed as

si,c = li,cref/l
c, (4)

where the shading is modeled as the irradiance ratio of the
light reaching the camera li,cref to the light emitted from the
light source lc. Note that the shading factor is wavelength
independent and only determined by the geometric relation-
ship between the light source position pc and the 3D vertex
position xi. Thus, the wavelength λ can be omitted in the
description.

If we assume Lambertian reflectance, lref is independent
of the camera position and expressed as

li,cref = li,cinc

pc − xi

‖pc − xi‖ · n(xi), (5)

where li,cinc is the irradiance of the incident light at i-th
vertex, n(xi) ∈ R

3 is the normal vector computed by xi

and its adjacent vertexes, and pc−xi

‖pc−xi‖ indicates the nor-
malized light direction. Similar to some photometric stereo
works [44], [45], by considering a near point light model and
the inverse square illumination attenuation according to the
distance between pc and xi, the irradiance at i-th vertex is
expressed as

li,cinc =
lc

‖pc − xi‖2 . (6)

By assuming that ambient light and interreflection are neg-
ligible, the shading factor is finally derived by substituting
Eq. (5) and Eq. (6) into Eq. (4) as

si,c =
pc − xi

‖pc − xi‖3 · n(xi). (7)

In practice, spectral functions in Eq. (3) are discretized
with some wavelength intervals into Nλ elements (Nλ = 31
for the case of [400nm, 700nm] with 10nm intervals). Thus,
Eq. (3) can be represented in a matrix form by

yi,c = mi,c
s si,cCTLcri, (8)

where yi,c ∈ R
3 is the rendered RGB intensity vector, CT ∈

R
3×Nλ is the camera sensitivity matrix, Lc ∈ R

Nλ×Nλ is
the diagonal illumination spectral distribution matrix, and
ri ∈ R

Nλ is the spectral reflectance vector.
It is known that the spectral reflectance of natural objects

can be represented by the weighted sum of a small number
of orthogonal basis functions [18], [21], [22]. By using basis
functions, the spectral reflectance vector ri in Eq. (8) can be
modeled as

ri = Bαi, (9)

where B ∈ R
Nλ×Nb is the basis matrix, αi ∈ R

Nb is the
weight vector, and Nb is the number of basis functions. In
our experiment, we use 8 basis functions, which is calcu-
lated using the spectral reflectance data of 1269 Munsell
color chips [46] by principal component analysis. We use
8 basis functions based on the observation that they are able
to represent more than 99% of the total variance of common
reflectance data [22]. Using spectral reflectance basis model,
recovering the spectral reflectance of a vertex is equivalent
to estimating the weight vector which has less unknown
parameters. Finally, given the parameters of xi, αi, and pc,
the rendered pixel intensity is expressed as

yi,c(xi,αi,pc) = mi,c
s si,cCTLcBαi. (10)
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Using the rendering term, our global optimization loss
takes into account both photometric information (i.e., shad-
ing) and 3D information (i.e., disparity) to refine the 3D
shape. Specifically, the shading is calculated using the sur-
face normal and light source distance which are derived
from estimated 3D vertex position xi and light source
position pc (Eq. (7)). Thus, the 3D surface can be refined
by minimizing the rendering errors caused by incorrect
shading. In addition, the rendering term uses disparity to
evaluate the consistency among input multi-view images.
During our optimization process, each estimated 3D vertex
position is reprojected to the 2D image planes for all visible
cameras. Then, the rendering error is evaluated for all repro-
jected vertices, so that each 3D vertex position can be refined
by minimizing the rendering errors caused by incorrect
reprojections. In this manner, our method considers both
shading and disparity, which are complementary to each
other.

3.3.2 Spectral Smoothness Term
It is known that the spectral reflectance of a natural object is
generally smooth. Thus, we impose a smoothness constraint
on the estimated spectral reflectance. The cost of the spectral
smoothness term Essm is defined as

Essm(A) =
Nv∑
i

‖DBαi‖2, (11)

where D ∈ R
Nλ×Nλ is the operation matrix to calculate the

second-order derivative [21] along the wavelength direction.

3.3.3 Photometric Smoothness Term
There are ambiguities in separating the reflectance from the
shading since our rendering model allows spatially varying
spectral reflectance. The photometric smoothness term Epsm

is applied to regularize this ambiguity [14], [47] as

Epsm(X,A) =
Nv∑
i

∑
j∈A(i)

wi,j(xi,xj)‖Bαi−Bαj‖2, (12)

where A(i) is the set of adjacent vertexes of i-th vertex and
wi,j is a weight to determine whether the change of the
reflectance between adjacent vertexes is allowed or not. We
use the same weight as [14], which is based on the intensity
or chromaticity difference observed in the input image.

3.3.4 Geometric Smoothness Term
We apply the same geometric smoothness term as
MVIR [14], which is defined as

Egsm(X) =
Nv∑
i

(
dist(xi,Ωi)

li

)2

. (13)

This term evaluates the distance dist(xi,Ωi) between i-th
vertex position xi and a local plane Ωi computed from its
adjacent vertexes. li is a normalizing parameter to discount
the scene scale (see [14] for details).

3.4 Optimization Steps

In our setup described in Section 3.1, the camera and the
LED light source are rigidly fixed on a plate. Thus, it is
only necessary to estimate the translation vector v ∈ R

3,
which is defined in the camera coordinate as the vector from
the origin to the light source position. Using the translation
vector, the light source position pc corresponding to c-th
camera viewpoint can be calculated as

pc = (Rc)−1(v − tc), (14)

where Rc and tc are extrinsic parameters of camera view-
point c which can be derived from SfM. Since the translation
vector is the same for all viewpoints, we only need to esti-
mate the translation vector for estimating all light positions.

Figure 3 shows our optimization steps. Firstly, the initial
vector for v is set as 0 (i.e. the origin of the camera coordi-
nate). To avoid a local minimum solution, we then estimate
a proper initial light source positions by fixing the 3D vertex
positions during the optimization. Finally, we optimize all
parameters using the initial light source positions. Since the
calculation of the shadow mask ms for one vertex requires
the whole estimated mesh, the optimization and the shadow
calculation are performed separately and iterated several
times until the parameters converge.

The weights in Eq. (1) are empirically set as γ1 = 0.01,
γ2 = 2, and γ3 = 0.01. The non-linear optimization problem
of Eq. (1) is solved using C++ Ceres Solver [48].

4 EXPERIMENTAL RESULTS

We conducted the experiments using two setups. As the
light source, the first setup uses an LED bulb as shown in
Fig. 1, while the second setup uses an LED projector as in
Pro-Cam SSfM [29]. For both setups, we assume that the
camera sensitivity and the illumination spectrum have been
calibrated. The experimental details are explained below.

4.1 Camera and LED Bulb Setup

4.1.1 Setup Details
In this setup, we used a Haodeng WH018 RGBCW smart
LED bulb as the light source. This LED bulb can emit
three types of illumination with different spectral power
distributions, which were measured by using a StellarNet
BlueWave-VIS Spectrometer, as shown in Fig. 4. For captur-
ing input images, we used a Canon EOS 5D Mark-II digital
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camera. The camera spectral sensitivity of this model was
obtained from the database of [49], as shown in Fig. 4.

Before conducting the spectral-3D reconstruction exper-
iments, we selected the best illumination set for spectral
reflectance estimation using the spectral reflectance data of
the 24 patches of an X-Rite’s colorchart. Figure 4 shows
the average RMSE comparison for the estimated spectral
reflectance of the 24 patches when using different illu-
mination combinations. It can be observed that RMSE is
reduced by using two or three illuminations , validating that
multispectral observations improve the spectral reflectance
estimation accuracy. In our experiments, we used the illu-
mination set of (LED 1, LED 2) since there is no big differ-
ence between the result using this set and the result using
all three illuminations. For our optimization problem, two
illuminations result in information from only six spectral
bands (i.e., 2 illuminations × 3 color channels), fewer than
the dimensionality of the spectral basis functions (Nb = 8
in our experiments). To ensure that the inverse problem we
solve is well-posed, we regularize our optimization through
the spectral smoothness term Essm and the photometric
smoothness term Epsm.

4.1.2 Simulation Results

To quantitatively evaluate the 3D shape quality and the
spectral reflectance accuracy, we preformed simulation ex-
periments using two CG models (Armadillo and Stan-
ford Bunny) obtained from Stanford 3D Scanning Repos-
itory [51]. Using each CG model, we created a ground-
truth spectral-3D model, which has ground-truth spectral
reflectance data for every 3D point. As the ground-truth

spectral reflectance data, we used the spectral reflectance
data of the colorchart’s 24 patches. According to the texture
shown in Fig. 5, each reflectance data of the 24 patches
was assigned to the 3D points. Using the created ground-
truth spectral-3D model, multi-view input images with the
resolution of 1024 × 768 were generated using 74 camera-
light pair positions, as shown in Fig. 6. For each camera-light
pair position, two images were rendered using the camera
and the two illuminations as described in Section 4.1.1.
Some examples of the rendered images are shown in Fig. 5.

In the simulation experiments, we applied OpenMVS [8]
for initial point cloud reconstruction, where we used the
ground-truth camera poses, and then applied Poisson sur-
face reconstruction [42] to generate the initial mesh model
for our Spectral MVIR. We compared our method with
the combination of OpenMVS and an existing image-based
spectral reflectance estimation method [18], since there is no
existing spectral-3D reconstruction method directly appli-
cable to the considered camera and LED bulb setup, to the
best of our knowledge. For the spectral reflectanc estimation
of the compared method, we first applied the image-based
spectral reflectance estimation method [18] to every input
image. Then, we calculated the spectral reflectance of each
vertex of the generated OpenMVS’s mesh by averaging
the spectral reflectance results estimated at all the pixels
corresponding to the 3D vertex point projection to all visible
camera images.

Figure 6 shows the ground-truth light source positions
(black points) and the estimated light source positions by
our method (red points). It can be confirmed that our
method can accurately estimate the light source positions.
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Fig. 11. Sampled spectral reflectance results for each of colorchart’s 24 spectral reflectance
data on Armadillo. The blue line is the ground truth, the red line is our result (average within
each patch), and the yellow line is the results of the combined method (OpenMVS+ [18]).

Figure 7 shows the qualitative comparison of the estimated
3D shapes and the sRGB color representations converted
from the estimated spectral reflectances. We can confirm
that our method successfully refines the initial model recon-
structed by OpenMVS by exploiting shading ques. Also, our
sRGB results are closer to the ground truth and represent
the object’s inherent property less affected by the shading
and the shadows compared with the sRGB results of the
combined method (OpenMVS+ [18]).

As discussed in Section 3.3.1, spectral MVIR considers
both disparity and shading information for 3D shape refine-
ment. In Fig. 9, we compare our method with MVIR [14],
which is one of the state-of-the-art 3D shape refinement
methods also considering both disparity and shading. We
can confirm that our method recovers finer details than
MVIR; this is because our method estimates the point light
source positions and shadows, whereas MVIR estimates a
general spherical harmonics illumination model.

To evaluate the 3D shape quantitatively, we used two
common metrics, i.e. completeness and accuracy [50], [52].
The completeness is the distance from each ground-truth 3D
point to its nearest estimated 3D point. The accuracy is the
distance from each estimated 3D point to its nearest ground-
truth 3D point. Figure 8 shows the comparison of the com-

pleteness and the accuracy errors, where the errors for each
3D point are colorized and the average errors are shown
below the error maps. We can see that our method achieves
better accuracy on the both models. Although OpenMVS
provides better completeness on the Armadillo model, it
shows much worse accuracy than our method. For the
average results of accuracy and completeness, our method
can provide better results compared with OpenMVS.

We next evaluate the spectral reflectance accuracy. Fig-
ure 10 shows the error map for estimated spectral re-
flectance, where RMSE over all wavelengths is visual-
ized for each 3D point. We can confirm that our method
achieves lower average RMSEs compared with the com-
bined method (OpenMVS+ [18]). This is because that the
combined method does not consider the effects of shad-
ing and shadows on the spectral reflectance estimation,
resulting in large errors for complicated surfaces. Figure 11
shows the sampled spectral reflectance results for each of
colorchart’s 24 spectral reflectance data on the Armadillo
model. The blue line is the ground truth, the red line is
our result, and the yellow line is the result of the combined
method (OpenMVS+ [18]). We can confirm that our method
achieves closer spectral reflectances to the ground truths
than the combined method (OpenMVS+ [18]).
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Fig. 13. 3D reconstruction results for a clay sculpture. (a) Example input images; (b) Estimated camera poses and light source positions by our
method; (c) Comparison of the estimated 3D shapes.

We next demonstrate the results of spectral-3D relight-
ing, which is the application of reproducing the image under
the light source with an arbitrary position and spectral
distribution. Figure 12(a) shows an original image rendered
as one of the captured input images. Figure 12(b) shows
the relighting results under a different light source position
using the estimated spectral-3D model, while Fig. 12(c)
shows the relighting results under a different spectral dis-
tribution. As shown in the error maps compared with the
ground truth, we can confirm that our method achieves
better spectral-3D relighting accuracy compared with the
combined method (OpenMVS+ [18]).

4.1.3 Results for Real Objects

We next evaluate our method for real images. We captured
the images of a clay sculpture from 40 viewpoints using
our image acquisition setup, as shown in Fig. 1. Figure 13(a)
shows example input images, where each viewpoint’s image
was captured in the RAW format by a hand-held manner
under one of two illuminations. In our method, we applied

Colmap [9] for camera pose estimation (SfM), OpenMVS [8]
for dense point cloud reconstruction (MVS), and Poisson
surface reconstruction [42] for initial mesh generation. Fig-
ure 13(b) shows the estimated camera poses by Colmap
and the estimated light source positions by our method.
Figure 13(c) compares our 3D shape result with the results
of Colmap’s MVS and OpenMVS. We can confirm that our
Spectral MVIR can reconstruct finer details than Colmap
and OpenMVS.

Figure 14(a) shows the sRGB result and the spectral re-
flectance results for some sampled vertexes estimated by our
method, which are very close to ground truths measured
by a StellarNet BlueWave-VIS Spectrometer. Figure 14(b)
shows the results of spectral-3D relighting under different
light source positions (middle) or different spectral power
distributions (right). Those results demonstrate that we can
effectively perform the spectral-3D relighting using the es-
timated detailed 3D shape and the spectral reflectances for
every vertex.



400 500 600 700
0

0.5

1

400 500 600 700
0

0.5

1

Ground truth
Ours

400 500 600 700
0

0.5

1

(a) sRGB visualization and
spectral reflectance results

Relighting under different light positions Relighting under different spectrums
Actual image
under LED 2

Halogen lampFluorescence

400 500 600 700 400 500 600 700 400 500 600 700

Position 1 Position 2

(b) Spectral-3D relighting results

Fig. 14. Spectral reflectance and relighting results for a clay sculpture. (a) The sRGB visualization and estimated spectral reflectances by our
method; (b) Spectral-3D relighting results under an arbitrary light position and spectral power distribution.

400 500 600 700 400 500 600 700 400 500 600 700 400 500 600 700 400 500 600 700 400 500 600 700 400 500 600 700

…

…M
ul

ti-
vi

ew

Structured-light patterns Uniform color illuminations

(c) Example rendered images for Thai Statue

Red Green Blue Cyan Magenta Yellow White

Projector

Camera

(a) 3D models (b) Camera and projector poses
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4.2 Camera and Projector Setup
In this section, we compare our proposed method with
state-of-the-art Pro-Cam SSfM [29] by using the 3D model
obtained by Pro-Cam SSfM as the initial model for our joint
reconstruction by Spectral MVIR.

4.2.1 Setup Details
We applied the same setup as Pro-Cam SSfM [29], where an
ASUS P3B LED projector and a Canon EOS 5D Mark-II dig-
ital camera are used. According to the data acquisition pro-
cedure of Pro-Cam SSfM, the projector was used to project
the sequence of structured-light (gray-code) patterns and
seven uniform color illuminations, as shown in Fig. 15(c),
with the projector resolution of 1024×768. The illumination
spectral power distributions were measured by using a
StellarNet BlueWave-VIS Spectrometer. The images with the
sequentially projected illuminations were captured using
the EOS 5D Mark-II camera with the pixel resolution of
5616×3170. The spectral sensitivity of the camera is shown
in Fig. 4. The input images for Pro-Cam SSfM were captured
from multiple viewpoints by alternately moving the camera
and the projector around the object with arbitrary positions,
as shown in Fig. 15(b).

Pro-Cam SSfM sequentially performs the 3D reconstruc-
tion and the spectral reflectance estimation. In the 3D re-
construction step, the camera poses, the projector poses,
and the 3D points are simultaneously estimated based on
multi-view feature correspondences using the structured-
light patterns. We used the 3D model estimated by Pro-Cam
SSfM as the initial model for our Spectral MVIR refinement
while jointly estimating the spectral reflectance. For the joint
optimization, we fixed the camera poses and the projector
poses to the ones estimated by Pro-Cam SSfM, since they
are sufficiently accurate because of reliable feature matching
using the structured-light patterns in Pro-Cam SSfM.

4.2.2 Simulation Results

To evaluate the 3D model refinement by Spectral MVIR, we
employed two CG models (Thai Statue and Lucy) that have
detailed surfaces, which were downloaded from Stanford
3D Scanning Repository [51]. As shown in Fig. 15(a), each
ground-truth spectral-3D model with ground-truth spectral
reflectance data was generated in the same way as described
in Section 4.1.2. Multi-view input images were generated
using 18 camera and projector poses, as shown in Fig. 15(b).
For each camera viewpoint, two sequences of images under
structured-light (gray-code) patterns and uniform color illu-
minations were rendered by strictly following the Pro-Cam
SSfM’s data acquisition procedure [29]. The examples of the
rendered images for two viewpoints are shown in Fig. 15(c).

Figure 16 shows the qualitative comparison of the es-
timated 3D shapes and the sRGB color representations
converted from the estimated spectral reflectances. We can
see that the reconstructed 3D shape by Pro-Cam SSfM
shows lower quality than the reconstructed 3D shape by our
method, especially on detailed surfaces such as the face of
Thai Statue and the wings of Lucy. This is the limitation of
Pro-Cam SSfM, where the 3D model resolution is restricted
by the projector resolution, which is low in general. The
coarse 3D reconstruction on detailed surfaces causes the
error of the estimated spectral reflectance, which can be
seen as severe “baked-in” shading artifacts in the sRGB
results of Pro-Cam SSfM, as shown in Fig. 16. In contrast,
our Spectral MVIR can effectively refine the 3D model
and reconstruct the surface details by using the shading
information observed for high-resolution camera pixels.

Figure 17 shows the quantitative comparison of the 3D
shape results using the completeness and the accuracy error
metrics [50], [52]. We can confirm that our method out-
performs Pro-Cam SSfM in both the completeness and the
accuracy with clear margins. Figure 18 visualizes the RMSEs
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of the spectral reflectance results for each 3D point. We
can confirm that our method shows lower average spectral
reflectance RMSEs, as the 3D shape refinement via the joint
shape and reflectance optimization also contributes to the
improvment of the spectral reflectance accuracy.

4.2.3 Results for Real Objects
Figure 19 shows the 3D reconstruction results for two real
objects, a clay sculpture (left) and a shoe (right). The top
images show the results of camera and projector poses
estimated by Pro-Cam SSfM, which were used to refine the
3D shape by Spectral MVIR. From the 3D shape results,
we can confirm that our method can reconstruct more
detailed surfaces than Pro-Cam SSfM, which is because the
resolution of the reconstructed shape by Pro-Cam SSfM
depends on the resolution of the projector, whereas that
of the reconstructed shape by our method depends on the
resolution of the camera which is much higher in general.

4.3 Limitations

Spectral MVIR still has several limitations. First, we assume
that the camera sensitivity and the illumination spectrum
are known or pre-estimated, which requires the spectral
calibration of the system. Second, the spectral basis model
brings smooth reflectance results for narrow spectral re-
flectance curves that cannot be represented by smooth basis
functions. Figure 20 shows a failure case, where the narrow
spectral reflectance curve (I) is not recovered accurately,
compared with more smooth spectral reflectance curves (II
and III). Third, Spectral MVIR is currently limited to the
objects with Lambertian reflectance and cannot handle ob-
jects with more complex reflectances, such as glossy objects
including specular reflections, or the surfaces with angle-
dependent reflectances.

5 CONCLUSION

In this paper, we have proposed Spectral MVIR, which is
a novel method for joint 3D shape and spectral reflectance
reconstruction. To jointly optimize each mesh vertex’s posi-
tion and spectral reflectance, we have built a cost optimiza-
tion framework based on a multi-view and multispectral
rendering model considering our image acquisition setup
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Fig. 19. The 3D reconstruction results for two real objects, (a) a clay
sculpture and (b) a shoe. From top to bottom, we show the estimated
camera (green) and projector (red) poses by Pro-Cam SSfM, the es-
timated 3D shapes by Pro-Cam SSfM, the estimated 3D shapes by
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Fig. 20. A failure case on an object with a narrow spectral reflectance
curve. (a) The estimated 3D shape using a projector as the light source.
(b) An image for reference. (c) The estimated spectral reflectance re-
sults. The narrow spectral reflectance curve (I) that cannot be repre-
sented by smooth basis functions is not estimated accurately, compared
with more smooth spectral reflectance curves (II and III).

using a standard RGB camera and a low-cost LED bulb or
LED projector. The light source positions also can be esti-

mated jointly in the optimization, which makes our system
based on Spectral MVIR free from geometric calibration.
Experimental results using both synthetic and real-world
data have demonstrated the potential of Spectral MVIR for
the acquisition of a high-quality 3D model with accurate
spectral reflectance property. We have also demonstrated
that our Spectral MVIR can effectively be combined with
the state-of-the-art Pro-Cam SSfM system and can produce
a refined 3D shape with more accurate spectral reflectance.
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