
5226 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 12, DECEMBER 2013

Single-Image Noise Level Estimation for
Blind Denoising

Xinhao Liu, Student Member, IEEE, Masayuki Tanaka, Member, IEEE, and Masatoshi Okutomi, Member, IEEE

Abstract— Noise level is an important parameter to many
image processing applications. For example, the performance of
an image denoising algorithm can be much degraded due to the
poor noise level estimation. Most existing denoising algorithms
simply assume the noise level is known that largely prevents
them from practical use. Moreover, even with the given true
noise level, these denoising algorithms still cannot achieve the
best performance, especially for scenes with rich texture. In this
paper, we propose a patch-based noise level estimation algorithm
and suggest that the noise level parameter should be tuned
according to the scene complexity. Our approach includes the
process of selecting low-rank patches without high frequency
components from a single noisy image. The selection is based
on the gradients of the patches and their statistics. Then, the
noise level is estimated from the selected patches using principal
component analysis. Because the true noise level does not always
provide the best performance for nonblind denoising algorithms,
we further tune the noise level parameter for nonblind denoising.
Experiments demonstrate that both the accuracy and stability are
superior to the state of the art noise level estimation algorithm
for various scenes and noise levels.

Index Terms— Noise level estimation, low-rank patch, image
gradient, PCA, blind denoising, Gaussian noise.

I. INTRODUCTION

NOISE level is an important parameter to many image
processing applications such as denoising, segmenta-

tion and so on. For example, the performance of an image
denoising algorithm can be much degraded due to the poor
estimate of the noise level. Most existing algorithms address
this problem by simply assuming the true noise level is known.
But in real world situations only noisy input images are given
and users must provide the noise level beforehand. So far
it remains a challenge to accurately estimate the noise level
for the variety of input images, especially for those with rich
textures. Therefore, a robust noise level estimation algorithm
is highly demanded.

The most common model for noise is the additive white
Gaussian noise (AWGN). The goal of noise level estimation
is to estimate the unknown standard deviation σn , given only

Manuscript received November 2, 2012; revised April 18, 2013 and
August 25, 2013; accepted September 9, 2013. Date of publication
September 24, 2013; date of current version October 9, 2013. The associate
editor coordinating the review of this manuscript and approving it for
publication was Prof. A. N. Rajagopalan.

The authors are with the Department of Mechanical and Control
Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
(e-mail: liuxinhao@ok.ctrl.titech.ac.jp; mtanaka@ctrl.titech.ac.jp; mxo@ctrl.
titech.ac.jp).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2013.2283400

a single observed noisy image. Many algorithms [1]–[6] have
been proposed for this topic. Generally they are classifiable
into filter-based approaches, patch-based approaches and sta-
tistical approaches. In filter-based approaches [1], [3], [4],
the noisy image is firstly filtered using a high-pass filter to
suppress the image structures. Then the noise variance is
computed from the difference between the noisy image and the
filtered image. The main difficulty of filter-based approaches
is that the difference of the two images is assumed to be the
noise, but this assumption is not always true, especially for
images with complex structures or fine details.

In patch-based approaches [2], [5], [7], images are decom-
posed into a number of patches. We can consider an image
patch as a rectangular window in the image with size N × N .
The patch with the smallest standard deviation among decom-
posed patches has the least change of intensity. The intensity
variation of a homogenous patch is mainly caused by noise.
Shin et al. [5] proposed a patch-based method in which the
patches whose standard deviations of intensity close to the
minimum standard deviation among decomposed patches are
selected. Then the noise level is computed from the selected
patches. This algorithm is simple and effective, but it tends to
overestimate the noise level for small noise level cases and is
underestimated in large noise level cases. The reason is that
patch selection result varies markedly depending on the input
image and noise level.

Recently, Zoran and Weiss [8] proposed a statistical
approach to analyze the DCT filtered image and suggested that
the change in kurtosis values result from the presented noise.
They proposed a model using this effect to estimate the noise
level in noise-corrupted natural images. After comparing the
results reported from several previous works, they show that
their method outperforms the state of the art.

Research on image denoising has a long history extending
from the 1970s, but its performance is still not perfect.
According to whether the noise level σn is known, they can
be classified into blind denoising and non-blind denoising. For
non-blind denoising, the noise level σn is regarded as a known
parameter. For blind denoising, the noise level σn is unknown
and is usually estimated together with the denoising process.
Thus one important problem of the denoising algorithm is
noise level parameter setting. Most existing algorithms are the
non-blind denoising which address this problem with manually
provided true noise level. However, even with the true noise
level, the performance of the non-blind denoising is still not
always the best. In this case, there are two approaches to
improve the performance of denoising: the first is to improve

1057-7149 © 2013 IEEE

LIU et al.: SINGLE-IMAGE NOISE LEVEL ESTIMATION 5227

the non-blind denoising itself, so that the non-blind denoising
with the true noise level always provide the best performance,
and the second approach is to tune the internal noise level
parameter to be provided for the non-blind denoising. In this
work, we focus on the noise level: firstly we propose a robust
noise level estimation algorithm and then we tune the internal
noise level parameter for further improvement of the blind
denoising which consists of the noise level estimation and the
non-blind denoising.

This paper is organized as follows: noise level estimation
based on PCA is discussed in section II. Then our proposed
low-rank patches selection and noise level estimation method
is described in section III. In section IV the tuned noise level
parameter to further improve the performance of the blind
denoising algorithms is discussed. Experiments and results are
described in section V.

II. NOISE LEVEL ESTIMATION BASED ON PCA

For the patch-based noise level estimation approach, patches
are generated from an input noisy image in a raster scan. In this
paper, we slide the window pixel-by-pixel. Then, the patches
are overlapped and the data model of the patches is

yi = zi + ni , i = 1, 2, 3..., M, (1)

where M is the number of patches, zi is the i -th noise-free
image patch with size N × N written in a vectorized format,
and each patch is defined by its center pixel. yi is the observed
vectorized patch corrupted by i.i.d. Gaussian noise vector ni

with zero-mean and variance σ 2
n . Noise vectors of overlapped

patch pair have some correlation. However, the non-overlapped
patch pairs dominate in the generated patches. To simplify
the problem, we assume that noise vectors are uncorrelated
with each other. The image patches can be regarded as data
in Euclidean space. We consider the variance of the data
projected onto a certain axis. We can define the direction of
the axis using the unit vector u. Assuming that the signal and
the noise are uncorrelated, the variance of the projected data
can be expressed as

V (uT yi) = V (uT zi) + σ 2
n , (2)

where V (uT zi) represents the variance of a set of patches {zi }
in the u direction, and σn is the standard deviation of the
Gaussian noise. We define the minimum variance direction
umin as

umin = arg min
u

V (uT yi) = arg min
u

V (uT zi) . (3)

Following the same manner of the maximum variance formu-
lation in [9], the minimum variance direction is calculable by
the PCA. The minimum variance direction is the eigenvector
associated to the minimum eigenvalue of the covariance matrix
defined by

�y = 1

M

M∑

i=1

yi yT
i , (4)

where M is the cardinality of the data, i.e. the total number of
patches. The variance of the data projected onto the minimum
variance direction equals the minimum eigenvalue of the

Fig. 1. Eigenvalues of the natural image and Gaussian noise: The first
principal component of natural image contributes most of the energy, whereas
Gaussian noise has the same power in every component. (a) Natural image.
(b) Gaussian noise.

covariance matrix. Therefore, we can derive the following
equation.

λmin (�y) = λmin(�z) + σ 2
n , (5)

where �y is the covariance matrix of the noisy patch y, �z is
the covariance matrix of the noise-free patch zi , and λmin (�)
represents the minimum eigenvalue of the matrix �.

If we can decompose the minimum eigenvalue of the covari-
ance matrix of the noisy patches as Eq. (5), then the noise level
can be estimated easily. However, this decomposed problem
is an ill-posed problem because the minimum eigenvalue of
the covariance matrix of the noise-free patches λmin (�z) is
unknown. Although this decomposition problem is the ill-
posed problem, we can estimate the noise level by taking
advantage of the properties of natural image. Because of the
redundancy of natural images, the data of natural images
span only low-dimensional subspace. If the data of patches
{zi } ∈ R

N×N span a subspace whose dimension is smaller than
N × N , we call such patches low-rank patches. Consequently,
the minimum eigenvalue of the covariance matrix λmin(�z)
can be assumed as zero. Since Gaussian noise has the same
power in every direction and all eigenvalues are the same, we
should be able to estimate the noise level from the subspace
spanned by the eigenvectors of the covariance matrix �y with
zero eigenvalues:

σ̂ 2
n = λmin (�y) , (6)

where �y is the covariance matrix of the noisy image patches.
An illustration of eigenvalues for a natural image and Gaussian
noise is shown in Fig. 1.

However, the redundancy assumption is not always true,
especially for images with fine detail. To describe the result
of this naive PCA-based noise level estimation method, we
show two examples. Plane in Fig. 2(a) is a scene with
simple structures in which most patches are low-rank patches.
The minimum eigenvalue of the image patches in the noise-
free image patches is close to zero. The naive PCA-based
method can correctly estimate the noise levels as shown in
Fig. 2(b). Fig. 3 (a), Mountain, shows a complex scene with
much richer textures. The minimum eigenvalue of the image
patches in Mountain is greater than zero. The Naive PCA-
based estimation overestimates the noise level, especially at
low noise levels from 1 to 10.

For images which consist mainly of low-rank patches,
the naive PCA-based method can estimate the noise level
accurately. For images with rich textures such as Mountain in

5228 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 12, DECEMBER 2013

Fig. 2. Naive PCA-based noise level estimation (Plane), correctly estimated
because the minimum eigenvalue is close to zero. (a) Plane. (b) Noise level
estimation result.

Fig. 3. Naive PCA-based noise level estimation (Mountain), incorrectly
estimated for the low noise level region because of the rich texture of the
scene. (a) Mountain. (b) Noise level estimation result.

Fig. 3 (a), it overestimates the noise level greatly. To overcome
the problem, one possible approach is to detecting collections
of low-rank patches (e.g. patches with similar structures) from
the input noisy image. In general sense, patches which include
similar high-frequency component like edge, corner, or texture
are also a kind of low-rank patches. However, it is not easy to
collect all kinds of low-rank patches, especially in the presence
of noise. In this work we try to detect the low-rank patches
without high frequency components which are easier to detect
and yield more reliable results as discussed in the next section.

III. PROPOSED NOISE LEVEL ESTIMATION ALGORITHM

A. Patch Selection

In patch-based noise level estimation methods, the input
image is divided into a number of patches in a raster scan.
To analyze the image structure and to select suitable patches
from the noisy image, local variance of image patch is widely
used. Lee and Popper [10] proposed an algorithm in which
the patches with the smallest local variance are assumed to
be homogenous patches. Similar selection method is used
by Pyatykh et al. [7], in which a number of patches with
largest variances are discarded. This method is simple and
fast, but tends to overestimate the amount of noise. The
reason is that for the rich textured images or images with
high noise level, patches with the smallest local variance are
not always homogenous patches. Shin et al. [5] extended
this method using an adaptive threshold of patch variance to
select patches. Improved as it is, the selection remains far
from ideal. To overcome this problem, Aishy Amer et al.
[2] proposed a method to analyze the image structure and
to detect the homogenous patches instead of just thresholding

Fig. 4. Texture strength of different types of noise-free patches. Weak-
textured patches have smaller values.

the local variance. A high-pass operator is applied to estimate
the uniformity of a local patch in different directions, then
a quantity threshold of homogeneity measure is calculated.
However, the high-pass operator can be affected easily by
the noise. The selection might fail because of the high level
noise. Most methods present difficulties estimating noise for
highly noisy images or for rich textured images. No techniques
have been found to perform best for various noise levels and
different images.

The selection methods based on variance can not distinguish
the signal and noise information. For measures based on edge
detection or estimation, the stability of performance can be
affected easily in the presence of noise. In this work, we
propose a texture strength metric which is based on the local
image gradient matrix and its statistical properties to select
low-rank patches.

Zhu and Milanfar [11] reported that image structure can
be measured effectively by the gradient covariance matrix.
Assuming that we have an image patch yi , its N2 ×2 gradient
matrix Gyi can be expressed as

Gyi = [
Dhyi Dvyi

]
, (7)

where Dh and Dv represent the matrices of horizontal and ver-
tical derivative operators, respectively. The N2 × N2 matrices
Dh and Dv are Toeplitz matrices [12] derived from gradient
filter. The gradient covariance matrix Cy i for the image patch
yi is defined as

Cy i = Gy
T
i Gyi (8)

=
[

yT
i DT

h Dhyi yT
i DT

h Dvyi

yT
i DT

v Dhyi yT
i DT

v Dvyi

]
,

where T denotes the transpose operator. Much information
about the image patch can be reflected by the gradient matrix
Gyi or the gradient covariance matrix Cyi . The dominant
direction and its energy can be measured using the eigenvec-
tors and eigenvalues of Cyi [13]

Cyi = V
[

s2
1 0
0 s2

2

]
VT . (9)

We can infer that the trace (sum of all eigenvalues) of the
covariance matrix reflects the texture strength of that patch.
A larger trace reflects a richer texture. We define the texture
strength ξi as

ξi = tr(Cyi), (10)

where tr(·) denotes the trace operator. Fig. 4 shows three
patches with different texture strength. It might be readily

LIU et al.: SINGLE-IMAGE NOISE LEVEL ESTIMATION 5229

apparent that a smaller trace value indicates a smoother or
the weaker textured patch.

The low-rank patches without high frequency components
in the noise-free images can be distinguished easily by thresh-
olding the texture strength. Unfortunately, the gradient matrix
is sensitive to noise, so the texture strength is affected easily by
the noise. Therefore, how the Gaussian noise affects the texture
strength should also be investigated. Next let’s consider noise.
One extreme case of low rank patches is when the patches are
flat. Consider the perfectly noise-free flat patch z f , its gradient
matrix Gz f can be expressed as

Gz f = [
Dhz f Dvz f

] = [
0 0

]
. (11)

The noisy flat patch y f with Gaussian noise is

y f = z f + n , (12)

where n represents the Gaussian noise patch with standard
deviation σn . Because the gradients of the perfectly flat patch
are zero (eq. 11), we can calculate the gradient matrix of the
noisy flat patch as the following:

Gy f = [
Dh(z f + n) Dv (z f + n)

]

= [
Dhn Dvn

]
. (13)

The texture strength of the patch y f becomes

ξ(n) = tr(Cy f) (14)

= tr(Gy
T
f Gy f)

= tr(

[
nT DT

h Dhn nT DT
h Dvn

nT DT
v Dhn nT DT

h Dvn

]
)

= nT (DT
h Dh + DT

v Dv)n. (15)

To analyze the statistical properties of texture strength, we
approximate the distribution of ξ(n) by the gamma distribution
to simplify the problem. Details are shown in the Appendix.
The p.d.f. of ξ(n) can be derived as shown below.

ξ(n) ∼ Gamma(
N2

2
,

2

N2 σ 2
n tr(DT

h Dh + DT
v Dv)), (16)

where Gamma(α, β) represents a gamma distribution with the
shape parameter α and scale parameter β. In addition, σn is
the standard deviation of the Gaussian noise, and Dh, Dv are
matrices derived from the gradient filter.

The naive PCA-based noise level estimation requires low-
rank patches. Although these low-rank patches might be weak-
textured and/or weak structured patches, we simply refer the
weak textured patches here and after to simplify the notation.
To select the weak textured patches, we define the null
hypothesis: “the given patch is a flat patch with the white
Gaussian noise”. We select the patches for which the null
hypothesis is accepted. The confidence interval that covers the
value of ξ(n) is defined as

P(0 < ξ(n) < τ) = δ. (17)

If the texture strength of that patch is less than the threshold
τ , then the null hypothesis is accepted and that patch can be
regarded as the weak textured patch. The threshold τ can be

Fig. 5. Example noisy patches and the threshold.

Fig. 6. Histogram of the texture strength (100 noise simulations) and the
value of threshold. Flat patch, σn = 3. Smooth patch, σn = 3. Complex
patch, σn = 3. Flat patch, σn = 12. Smooth patch, σn = 12. Complex patch,
σn = 12.

expressed as a function of the given significant level δ and
noise level σn , as shown below,

τ = σ 2
n F−1(δ,

N2

2
,

2

N2 tr(Dh
T Dh + Dv

T Dv)). (18)

Therein, F−1(δ, α, β) is the inverse Gamma cumulative dis-
tribution function with the shape parameter α and scale
parameter β. Also, δ is the confidence level. σn is the standard
deviation of the Gaussian noise, N2 represents the number of
pixels in the patch, and Dh, Dv are matrices derived from the
gradient filter as in (7).

Fig. 5 show some sample noisy patches (σn = 5) with its
texture strength and the threshold. Patches with high frequency
components are rejected by the threshold. Fig. 6 shows the
p.d.f. of the texture strength. We simulated 100 Gaussian noise
realizations with different noise levels σn = 3 and 12, and
added to 7×7 pure flat patch, smooth patch and complex patch,
the histogram of their texture strength and threshold value are
depicted in Fig. 6. Because the image patch is assumed to be
pure flat patch, and the natural image patches usually contain
some weak textures, the confidence level δ should be set very
close to 1. The final estimation result is not so sensitive to
the value of δ, and we use 1E-6 in our experiment. As the
Fig.6 shows, most patches can be selected correctly using the
threshold.

B. Iterative Framework for Noise Level Estimation.

As discussed in Section II, the noise level can be estimated
accurately if we can select low-rank patches. However, the
threshold to select the weak textured patches requires the
noise level as a variable. That presents a chicken-and-egg

5230 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 12, DECEMBER 2013

Fig. 7. Flowchart of the proposed iterative noise level estimation.

problem. To solve this chicken-and-egg problem, we introduce
an iterative framework to estimate the noise level and select
necessary patches. The iterative noise level estimation process
is presented in Fig. 7. First, an initial noise level σ̂ 0

n is
estimated from the covariance matrix, which is generated
using all patches in the input noisy image. Based on the
k-th estimated noise level σ̂ k

n , the (k + 1)-th threshold τk+1
is determined. The weak textured patch set, which we denote
Wk+1, is selected from the noisy image using the threshold
τk+1. Then the (k + 1)-th noise level σ k+1

n is estimated using
selected Wk+1 with the threshold τk+1. This process is iterated
until the estimated noise level σ̂n is unchanged.

Although the convergence of this iteration process is not
theoretically guaranteed, we have found experimentally that
this iteration process converges after several iterations. The
analysis of the iteration process and the estimated noise level
in each iteration are presented in section V-A Fig.11 and
Fig.12. We are able to get the convergence after several
iterations and we didn’t find any non-converging examples in
our experiments.

IV. TUNING NOISE LEVEL PARAMETER

FOR BLIND DENOISING

A. Noise Level Parameter

Many efficient non-blind denoising algorithms have
appeared [14]–[18] in recent years. BM3D algorithm by Dabov
et al. [14] is the leading one among them. BM3D is a nonlocal
approach that identifies similar patches across the image and
then performs the denoising. However, users must provide the
noise level parameter for this non-blind denoising algorithm,
which is also a difficult task.

Compared with the non-blind denoising algorithm, fewer
reports in the literature describe blind denoising. However, in
real world situations, the noise level is unknown. Only noisy
input images are given. Therefore, a blind image denoising
algorithm is highly demanded for practical use of these image

Fig. 8. Noise level parameter and denoising performance, true noise
level parameter σn = 24 does not give the optimal PSNR (Gravel image).
(a) Gravel. (b) PSNR value of denoising algorithms.

processing applications. Existing development of blind denois-
ing is classifiable into three categories:

1) A denoising algorithm that consists of noise level esti-
mation and non-blind denoising;

2) A non-blind denoising and evaluation of the denoised
image;

3) A denoising algorithm that estimates the noise level and
performs denoising simultaneously and/or iteratively.

As the first category, there are many non-blind denoising
algorithms as well as the noise level estimation algorithms
[4], [5], [8], [19]. However, they are usually developed inde-
pendently. Few studies have examined the combination of
algorithms of these two kinds. For the second category, Zhu
and Milanfar [11] proposed a non-reference metric Q based
on image gradient statistics. The metric is useful to measure
the content of the degraded image and set the parameter
for the denoising algorithms. Schimdt et al. [20] proposed a
deblurring/denoising algorithm with integrated build-in noise
estimation which lies in the third category.

The visual quality of the denoised image rises first because
of the suppression of noise; then it decreases because of
the blurring effect of the denoising filter. Results show that
the noise level parameter setting can affect the performance
of denoising algorithms directly. Although the noise level
estimation is a built-in function for blind denoising, these
algorithms still suffer from the choice of noise level parameter.
Moreover, even if the true noise level is estimated ideally, the
denoising algorithm might not achieve the best performance.

As depicted in Fig. 8 Gaussian noise with σn = 24 is added
to the clean gravel image. Then the denoising algorithm [14],
[15] is performed with different noise level parameters. Using
the PSNR as image quality metric, we can observe that for
this gravel image, which has rich textures, the highest PNSR
value of denoised image appears at σ ′

n = 20.6, which is not
the true noise level. The true noise level σn is not necessarily
the best choice for denoising. To further improve the current
denoising performance, we propose a method to tune the noise
level parameter for the blind denoising. Our work lies in the
first category blind denoising approaches.

B. Noise Level Parameter Tuned for Non-Blind Denoising

There are different metrics for measuring the similarity
between two images such as PSNR, MSE, SSIM index and

LIU et al.: SINGLE-IMAGE NOISE LEVEL ESTIMATION 5231

Fig. 9. Difference of noise level parameters: optimally tuned noise level
parameter for BM3D [14] and BLS-GSM [15], final estimated σ̂n and initial
estimated σ̂ 0

n (Gravel image).

so on. However, which metric is best for image assessment is
still an open research problem and is beyond the scope of this
paper. In this work, we choose the PSNR and SSIM index as
the example for parameter tuning in the experiment section.
Here we define the optimally tuned noise level parameter for
denoising is the noise level parameter which achieve the best
denoising performance in terms of the specific image assess-
ment metric. This noise level parameter is not only related
with the true noise level σn , but also depending on the specific
scene of the image. The denoising algorithm generally tends to
smooth the image, but the denoising algorithm cannot clearly
distinguish fine details of the image with the Gaussian noise.
For the scene with rich texture, the denoising algorithm may
over-smooth the pixels. To improve the denoising performance
the true noise level is insufficient. We should also consider the
scene complexity. Motivated by this, we develop an algorithm
to tune the noise level parameter for denoising based on
the true noise level and the complexity of the image scene.
The performance of denoising is determined fundamentally
by the denoising algorithm itself, but from the discussion and
experiments below, we can see that the performance can also
be further improved through parameter setting.

From our noise level estimation algorithm discussed in
section III-B, two different noise levels are obtainable. One
is final estimation result σ̂n , which is the estimated value
only using the selected patches. The other is initial estimation
result σ̂ 0

n , which is estimated using all patches. This is the
difference between the proposed method and existing noise
level estimation methods, which provides only one final result.
Although σ̂ 0

n is not as accurate as the σ̂n for the estimation
of true noise level, its value can provide some hints about the
image texture complexity. Therefore, we can take advantage of
the additional information reflected by the σ̂ 0

n to tune a better
noise level parameter.

The difference between σ̂ 0
n and σ̂n is shown in Fig. 9. From

Fig. 9 it is apparent that for the complex gravel image, the
value of these noise level parameters differ greatly and the
σ̂ 0

n is usually an over-estimated value because the image with
complex textures can not be represented easily by its first
principal component. Also for that reason, we must select low-
rank patches from the noisy image. The value of σ̂ 0

n is sensitive
to the image texture complexity. The difference between its
value and the value of true noise level somehow reflects the

Fig. 10. Recall precision curves of patch selection (Lena image): the proposed
method works much better for high noise level cases. Curve which is closer
to upper-right-hand corner is better. (a) Added noise level σn = 3. (b) Added
noise level σn = 15.

image complexity. Therefore, we can model the tuned noise
level as a function of σ̂ 0

n and σ̂n ,

σ̂ ′
n = R(σ̂ 0

n , σ̂n; θ). (19)

In this equation, σ ′
n is the tuned noise level parameter, σ̂ 0

n
and σ̂n represent the initial and final noise level estimation
result and θ is the unknown model parameter vector.

We take advantage of the additional information given by
σ̂ 0

n , and use a quadratic regression model to derive the tuned
noise level parameter in Eq. (19). The quadratic regression
model is just an example to solve the problem. Other regres-
sion models will also serve this purpose. Treating σ̂ 0

n and σ̂n

as two variables, the model can be expressed as shown below,

σ̂ ′
n = a0+a1σ̂n +a2σ̂

0
n +a3σ̂nσ̂

0
n +a4(σ̂

0
n)2+a5(σ̂n)2+ε. (20)

The optimally tuned noise level parameter σ ′
n can be derived

by brute-force search of a denoising algorithm such as BM3D
[14] or BLS-GSM [15]. And then the quadratic regression
models can be estimated by the fitting method, e.g. least-
squares approach. The results of noise level estimation and
denoising performance are both shown in the experiment
section V.

V. EXPERIMENTAL RESULTS

A. Patch Selection

In this part, we present the patch selection result. The test
image is the ‘Lena’ image. The patch selection can be regarded
as a binary classification problem. For the binary classification
problem, the precision and recall curve [21] is informative
to evaluate the performance. The precision is the number
of patches correctly selected divided by the total number of
selected patches. The recall is the number of patches that were
selected correctly divided by the total number of ground truth
patches need to be selected.

We define the ground truth of classification by manually
thresholding the texture strength of a noise-free image. Fig. 10
shows the precision and recall curve with different noise
levels. In the precision recall space, the high performance of
an algorithm is to be in the upper-right-hand corner. When
the noise level is low, as shown in Fig. 10(a), both the two
algorithms perform well. Among existing methods, that by
Shin et al. [5] selects homogeous patches that are close to
the smallest variance of the patch. However, the result can be
affected easily by the Gaussian noise. When the noise level

5232 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 12, DECEMBER 2013

Fig. 11. Example of the iteration process: the estimated value, threshold,
and number of selected patches are shown.

Fig. 12. Estimated noise level in each iteration. (a) Mountain image added
noise level σn = 5. (b) Mountain image added noise level σn = 25.
(c) Average estimated noise level BSD test set, σn = 5. (d) Average estimated
noise level BSD test set, σn = 25.

becomes higher, as shown in Fig. 10 (b) σ = 15, the proposed
algorithm has a clear advantage over the existing methods.

The Fig. 11 shows the iteration of the selection process.
The Gaussian noise with noise level σn = 2 is added to the
Mountain image. At first the initial noise level σ̂ 0

n = 9.47 is
estimated using all patches in the image. With this value, the
threshold can be calculated from Eq. 18, which equals 7298.5.
Then the low-rank patches can be selected using the threshold.
From the data of selected patches, an updated noise level
σ̂ 1

n = 3.08 is estimated. After three iterations, the estimated
noise level σ̂n becomes stable. That stable value is the final
estimated noise level.

The estimated noise level of each iteration is depicted in
Fig. 12. (a) and (b) show the change of the estimated noise
level for a signle image with σn = 5 and σn = 25. And
Fig. 12 (c) and (d) are the change of average estimated noise
level and its standard deviation for BSD test set (100 images).
In experiment, we can get well convergence after several
iterations.

B. Noise Level Estimation Result

Next, we compared the proposed method1 with existing
methods by different scenes with different noise levels. We

1MATLAB code is available on the author’s webpage.
http://www.ok.ctrl.titech.ac.jp/res/NLE/WTP.html

Fig. 13. Noise level estimation on Mountain image, all methods estimate
the noise level correctly. (a) Mountain. (b) Noise level estimation result.
(c) Selected patches (added σn = 1). (d) Selected patches (added σn = 25).

Fig. 14. Noise level estimation on Gravel image, other methods perform
poorly, especially for the low level region, the proposed method performs
much better. (a) Gravel. (b) Noise level estimation result. (c) Selected patches
(added σn = 1). (d) Selected patches (added σn = 25).

fix the patch size N = 7. The added noise level σn is set
from 1 to 25. We simulated noisy data from 100 natural
images in the test set of BSD [22]. Synthetic Gaussian noise is
added to each clean image with different noise levels, then the
noise level is estimated from the noisy image using different
algorithms.

Fig. 13 and Fig. 14 show results of two single images:
Mountain and Gravel. Because of the large amount of rich
textures, the methods by Zoran et al. in [8] and Tai et al.
in [4] overestimate the noise level, see Fig. 13(b). The pro-
posed method is based on the data of selected patches which

LIU et al.: SINGLE-IMAGE NOISE LEVEL ESTIMATION 5233

TABLE I

RESULT FOR THE BSD DATASET (TEST SET, 100 IMAGES), WHERE THE AVERAGE AND THE STANDARD DEVIATION OF ESTIMATED NOISE LEVELS,

AND ROOT MEAN SQUARE ERROR (RMSE) BETWEEN THE ESTIMATED NOISE LEVEL AND THE TRUE NOISE LEVEL ARE SHOWN.

BOLD FONT SHOWS BETTER RESULTS

are shown in (c) and (d). The estimation results get more
accurate.

Gravel is a relatively difficult scene to estimate the noise
level as shown in Fig.14. The whole image only includes fine
detail, which causes most methods to over estimate the noise
level greatly. Even though the proposed method achieves a
better noise level estimation.

Table I shows the average, standard deviation and root
mean square error (RMSE) of estimated noise levels from
100 images of the BSD test set [22]. The standard deviation
reflects the ability of the estimator for dealing with various
natural scenes. The RMSE is a good measure of precision for
the estimator. The comparison shows significant improvement
in the standard deviation and RMSE at all noise levels. It is
consistently effective for all images in the dataset. It indicates
that the proposed method is more accurate, stable, and scene
independent.

We present additional results of proposed algorithm run-
ning on TID2008 [23] dataset and compare with some latest
algorithms Pyatykh et al. [7] and Danielyan et al. [24].
Pyatykh et al. also estimated the noise level based on PCA but
used a different patch extraction method. We apply the same
experiments setting (σ 2

corr = σ 2
est − σ 2

re f) as described in their
paper: the final estimation result σcorr is corrected from the
estimated value σest because they believe the natural image in
TID2008 dataset is not noise-free and there is small amount of
noise denoted by σre f . The result is depicted in Table II. Note
that the data of Pyatykh et al. [7] and Danielyan et al. [24]
is directly from the Pyatykh et al.’s paper [7]. Some data of
[24] is missing since they are not available from their original
paper.

As one can see, Pyatykh et al. [7] and Danielyan et al. [24]
have comparable accuracy result to our proposed method
on TID2008 dataset. But the average execute time of
Pyatykh et al. is about 1.491 seconds per image (Matlab
code, Intel Core2 Quad CPU Q9650 3.00GHz × 4), while the
proposed method is 0.835 seconds, which is almost 2 times
faster.

C. Noise Level Parameter Tuned for Non-Blind Denoising

Denoising is a typical image processing application that
requires the noise level parameter. In this part, we will provide
evidence that the proposed tuned noise level can improve the

TABLE II

THE ACCURACY OF THE CONSIDERED METHODS FOR TID2008 [23].

σ̄corr − σn IS THE BIAS OF THE CORRECTED ESTIMATES. s(σcorr)

IS THE STANDARD DEVIATION OF THE CORRECTED ESTIMATES,

AND max|σcorr − σn | IS THE MAXIMUM DIFFERENCE

BETWEEN A CORRECTED ESTIMATE AND THE TRUE

VALUE. BOLD FONT REPRESENTS

A BETTER RESULT

performance of existing denoising algorithms. BSD dataset
[22] contains a train set of 200 natural images and a test
set of 100 natural images. We use the train set to learn the
regression coefficients in Eq. (20) and the test set to evaluate
the denoising performance. For each image in the train set we
synthesize 25 noisy images with different noise levels from
σn = 1 to 25. Thus in total there are 5000 data samples for the
regression. Firstly the results using BM3D [14] and the PSNR
metric are described and then the results of other denoising
filters and other metric are shown afterwards. The regression
coefficients of Eq. (20) using BM3D with PSNR evluation are:

[a0 ... a5] = [0.182 0.936 0.050 −0.066 0.052 0.013] . (21)

As for the result, the denoising PSNR using different noise
level parameters are shown in Fig. 17:

5234 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 12, DECEMBER 2013

Fig. 15. Visual comparison of different noise level parameters. Improvement is evident even with the true noise level. The tuned noise level parameter based on
proposed method achieves the best PSNR. The denoising algorithm is BM3D [14]. (a) Original image. (b) Noisy image Added σn = 15 PSNR = 24.61 [dB].
(c) Tuned noise level + BM3D σ̂ ′

n = 13.49 PSNR = 27.21 [dB]. (d) σ̂n (Proposed) + BM3D σ̂n = 15.21 PSNR = 27.11 [dB]. (e) True noise level + BM3D
σn = 15 PSNR = 27.14 [dB]. (f) σ̂n (Zoran’s) + BM3D σ̂n = 17.72 PSNR = 26.57 [dB]. (g) σ̂n (Tai’s) + BM3D σ̂n = 19.44 PSNR = 24.63 [dB].

Fig. 16. Denoised image (Gravel) with different noise level parameters. The tuned noise level based on proposed method achieves best PSNR. The denoising
algorithm is BM3D [14]. (a) Original image. (b) Noisy image Added σn = 15 PSNR = 24.59 [dB]. (c) Tuned noise level + BM3D σ̂ ′

n = 14.04 PSNR
= 26.40 [dB]. (d) σ̂n (Proposed) + BM3D σ̂n = 15.77 PSNR = 26.07 [dB]. (e) True noise level + BM3D σn = 15 PSNR = 26.25 [dB]. (f) σ̂n (Zoran’s) +
BM3D σ̂n = 21.91 PSNR = 23.61 [dB]. (g) σ̂n (Tai’s) + BM3D σ̂n = 19.44 PSNR = 24.63 [dB].

1) Optimally tuned noise level;
2) True noise level σn ;
3) Tuned noise level parameter σ̂ ′

n ;
4) Estimated noise level parameter σ̂n;
5) Estimated noise level by Zoran’s algorithm [8];
6) Estimated noise level by Tai’s algorithm [4].

In the low level region (σn between 1 and 10), the PSNR of
denoised image with true noise level is the closest to the PSNR
value of optimally tuned noise level. Although the true noise
level parameter achieves the best PSNR in this situation, it

is not practical. Because in the current research, no algorithm
can correctly estimate the true noise level for a complex image
in the low noise level region. In the high-level region, the
tuned noise level parameter outperforms all other parameters,
even the true noise level. Details of the PSNR are shown in
Table III. The visual comparison is presented in Fig. 15 and
Fig. 16.

Although PSNR is widely used for evaluation in image
processing research, it is proved to be inconsistent with
human visual judgement. Hence we also analyze the regression

LIU et al.: SINGLE-IMAGE NOISE LEVEL ESTIMATION 5235

TABLE III

AVERAGE PSNR VALUE AND ITS STANDARD DEVIATION OF DENOISED IMAGE FROM THE BSD DATASET (TEST SET, 100 IMAGES).

THE DENOISING ALGORITHM IS BM3D [14]. BOLD FONT DENOTES BETTER RESULTS

TABLE IV

AVERAGE SSIM VALUE AND ITS STANDARD DEVIATION OF DENOISED IMAGE FROM THE BSD DATASET (TEST SET, 100 IMAGES). THE DENOISING

ALGORITHM IS BM3D [14]. BOLD FONT DENOTES BETTER RESULTS

TABLE V

AVERAGE PSNR VALUE AND ITS STANDARD DEVIATION OF DENOISED IMAGE FROM THE BSD DATASET (TEST SET, 100 IMAGES). THE DENOISING

ALGORITHM IS BLS-GSM [15]. BOLD FONT REPRESENTS BETTER RESULTS

TABLE VI

AVERAGE SSIM VALUE AND ITS STANDARD DEVIATION OF DENOISED IMAGE FROM THE BSD DATASET (TEST SET, 100 IMAGES). THE DENOISING

ALGORITHM IS BLS-GSM [15]. BOLD FONT REPRESENTS BETTER RESULTS

model with another image quality metric SSIM index [25].
The regression coefficients of Eq. (20) using BM3D with
SSIM evaluation are:

[a0 ... a5] = [0.128 0.893 0.059 −0.095 0.075 0.019] . (22)

And the detail SSIM of the denoised image are show in
Table. IV. From the table, one can see that the tuned noise

level achieves best SSIM value among the compared methods
for different added noise levels.

We conducted experiments with another non-blind denois-
ing algorithm BLS-GSM [15] to test the proposed model. The
regression coefficients using PSNR evaluation are

[a0 ... a5] = [−0.044 0.923 0.081 −0.087 0.073 0.014] . (23)

5236 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 12, DECEMBER 2013

Fig. 17. Different PSNR values from different noise level parameters. the
proposed σ̂n exceeds the existing methods. Moreover, the tuned noise level
parameter σ̂ ′

n can further improve the denoising performance.

Fig. 18. Tuned noise level using different denoising algorithms and image
evaluation metrics. (a) Mountain image. (b) Gravel image.

Fig. 19. Average PSNR of the denoised image, the blind denoising algorithms
are: tuned noise level + BM3D [14], BM3D [14] + Metric Q [11] and Schmidt
[20]. The proposed method performs better than the others.

and using SSIM are:

[a0 ... a5] = [−0.062 0.866 0.121 −0.088 0.080 0.009] . (24)

Denoising results are shown in Table V for PSNR and Table VI
for SSIM. We can see similar improvements for this denoising
algorithm.

The tuned noise levels estimated by Eq. (21), (22), (23), (24)
are shown in Fig. 18. The image is Mountain. We can observe
their difference with the true noise level, especially when the
noise level is high.

For algorithms in the second category which are aimed
at evaluation of the denoised image, Zhu and Milanfar’s
work [11] is chosen for comparison. In their work, a non-
reference metric Q of image content in the presence of noise
and other disturbances is proposed. The metric Q is useful
to set the parameters for the image denoising algorithms.

Work by Schmidt et al. [20] lies in the third category, which
estimates the noise level and denoising iteratively. The average
PSNR of 100 images from BSD [22] test set is also computed
using these two algorithms. Results are provided in Fig. 19.
From the plot, it is apparent that Metric Q does not perform
well in the low noise level region. For images with higher noise
level, the result improves. The tuned noise level parameter by
our proposed method yields the best average PNSR value for
denoising in every case.

VI. CONCLUSION

As described in this paper, the practical estimation and
setting of the parameter for denoising is discussed. We pro-
posed an algorithm to select low-rank patches without high
frequency from images corrupted by Gaussian noise. We apply
the PCA technique to estimate the noise level based on the
data of selected patches. The eigenvalues of the image gradient
covariance matrix are used as the metric for texture strength
and how it changes with different noise levels σn is analyzed.
In contrast to state of the art methods, the proposed method is
more scene-independent and presents significant improvement
for both accuracy and stability for a range of noise levels in
various scenes.

Experiments results show that the true noise level does
not provide the best denoising performance for most of the
current non-blind denoising algorithms. Therefore, we extend
the noise level estimation algorithm to tune the noise level
parameter. The tuning process is done by considering both
the noise level and image scene complexity. Experiments
show that the tuned noise level parameter can further improve
denoising performance.

APPENDIX

DERIVATION OF PROBABILITY DISTRIBUTION FUNCTION

OF TEXTURE STRENGTH

We approximate the distribution of ξ(n) by the gamma
distribution to simplify the problem. The Moment Generating
Function (MGF) of the variable ξ(n) can be written as

Mξ (t) = E(etξ(n))

=
∫

etξ(n) pN (n)dn

=
∫

et ·nT (DT
h Dh+DT

v Dv)n 1

(2πσ 2)
N
2

e− nT n
2σ2 dn

= 1

(2πσ 2)
N
2

∫
e

nT (I−2σ2t (DT
h Dh+DT

v Dv)n

2σ2 dn

= |I − 2σ 2t (DT
h Dh + DT

v Dv)|− 1
2

=
N∏

i=1

1

(1 − 2σ 2tλi)
1
2

, (25)

where λi is the i -th eigenvalue of the matrix (DT
h Dh +DT

v Dv),
and the value of λi can be deduced as

λi � 1

N

N∑

i=1

λi

= 1

N
tr(DT

h Dh + DT
v Dv). (26)

LIU et al.: SINGLE-IMAGE NOISE LEVEL ESTIMATION 5237

The MGF of the gamma distribution with the shape parameter
α and scale parameter β is:

Mg(t) = (
1

1 − βt
)α =

N∏

i=1

1

(1 − βt)
α
N

. (27)

Comparing Eq. (25) and Eq. (27), we approximate the MGF
of the variable ξ(n) by that of the gamma distribution with
the following parameters.

α = N

2
,

β = 2

N
σ 2

n tr(DT
h Dh + DT

v Dv) (28)

Consequently, the p.d.f. of ξ(n) is the following:

ξ(n) ∼ Gamma(
N

2
,

2

N
σ 2

n tr(DT
h Dh + DT

v Dv)). (29)

ACKNOWLEDGMENT

The authors would like to thank the associate editor
Prof. A. N. Rajagopalan and the anonymous reviewers for their
valuable comments and suggestions.

REFERENCES

[1] K. Rank, M. Lendl, and R. Unbehauen, “Estimation of image noise
variance,” IEE Proc. Vis., Image, Signal Process., vol. 146, no. 2,
pp. 80–84, Aug. 1999.

[2] A. Amer, A. Mitiche, and E. Dubois, “Reliable and fast structure-
oriented video noise estimation,” in Proc. Int. Conf. Image Process.,
vol. 51. 2002, pp. I–840–I–843.

[3] B. R. Cornera, R. M. Narayanana, and S. E. Reichenbach, “Noise esti-
mation in remote sensing imagery using data masking,” Int. J. Remote
Sens., vol. 24, no. 4, pp. 689–702, 2003.

[4] S.-C. Tai and S.-M. Yang, “A fast method for image noise estimation
using Laplacian operator and adaptive edge detection,” in Proc. 3rd Int.
Symp. Commun., Control Signal Process., Mar. 2008, pp. 1077–1081.

[5] D.-H. Shin, R.-H. Park, S. Yang, and J.-H. Jung, “Block-based noise
estimation using adaptive Gaussian filtering,” IEEE Trans. Consumer
Electron., vol. 51, no. 1, pp. 218–226, Feb. 2005.

[6] C. Liu, R. Szeliski, S. B. Kang, C. L. Zitnick, and W. T. Freeman,
“Automatic estimation and removal of noise from a single image,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 2, pp. 299–314,
Feb. 2008.

[7] S. Pyatykh, J. Hesser, and L. Zheng, “Image noise level estimation by
principal component analysis,” IEEE Trans. Image Process., vol. 22,
no. 2, pp. 687–99, Feb. 2013.

[8] Z. Daniel and W. Yair, “Scale invariance and noise in natural
images,” in Proc. IEEE 12th Int. Conf. Comput. Vis., Sep./Oct. 2009,
pp. 2209–2216.

[9] C. M. Bishop, Pattern Recognition and Machine Learning. New York,
NY, USA: Springer-Verlag, 2006.

[10] J. Lee and K. Hoppel, “Noise modeling and estimation of remotely-
sensed images,” in Proc. 12th Can. Symp. IGARSS, Jul. 1989,
pp. 1005–1008.

[11] X. Zhu and P. Milanfar, “Automatic parameter selection for denoising
algorithms using a no-reference measure of image content,” IEEE
Trans. Image Process., vol. 19, no. 12, pp. 3116–32, Dec. 2010.

[12] K. B. Petersen and M. S. Pedersen, “The matrix cookbook,” Tech. Univ.
Denmark, Kongens Lyngby, Denmark, Tech. Rep., Nov. 2008 [Online].
Available: http://www2.imm.dtu.dk/pubdb/p.php?3274

[13] J. Bigun, G. H. Granlund, and J. Wiklund, “Multidimensional orienta-
tion estimation with applications to texture analysis and optical flow,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 13, no. 8, pp. 775–790,
Aug. 1991.

[14] D. Kostadin, F. Alessandro, K. Vladimir, and E. Karen, “Image
denoising by sparse 3-D transform-domain collaborative filtering,”
IEEE Trans. Image Process., vol. 16, no. 8, pp. 2080–2095, Aug. 2007.

[15] J. Portilla, V. Strela, M. Wainwright, and E. Simoncelli, “Image denois-
ing using scale mixtures of Gaussians in the wavelet domain,” IEEE
Trans. Image Process., vol. 12, no. 11, pp. 1338–1351, Nov. 2003.

[16] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-local
sparse models for image restoration,” in Proc. IEEE 12th Int. Conf.
Comput. Vis., Sep./Oct. 2009, pp. 2272–2279.

[17] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for
image denoising,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2005, pp. 60–65.

[18] P. Chatterjee and P. Milanfar, “Clustering-based denoising with locally
learned dictionaries,” IEEE Trans. Image Process., vol. 18, no. 7,
pp. 1438–1451, Jul. 2009.

[19] J. Immerkar, “Fast noise variance estimation,” Comput. Vis. Image
Understand., vol. 64, pp. 300–302, Sep. 1996.

[20] S. Uwe and S. Kevin, “Bayesian deblurring with integrated noise
estimation,” in Proc. IEEE Conf. CVPR, Jun. 2011, pp. 2625–2632.

[21] J. Davis and M. Goadrich, “The relationship between precision-recall
and ROC curves,” in Proc. IEEE Int. Conf. Mach. Learn., Jun. 2006,
pp. 233–240.

[22] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmenta-
tion algorithms and measuring ecological statistics,” in Proc. 8th IEEE
Int. Conf. Comput. Vis., vol. 2. Jul. 2001, pp. 416–423.

[23] N. Ponomarenko, V. Lukin, A. Zelensky, K. Egiazarian, M. Carli,
and F. Battisti, “TID2008—A database for evaluation of full-reference
visual quality assessment metrics,” Adv. Modern Radioelectron.,
vol. 10, no. 4, pp. 30–45, 2009.

[24] A. Danielyan and A. Foi, “Noise variance estimation in nonlocal
transform domain,” in Proc. IEEE Int. Workshop Local Non-Local
Approximat. Image Process., Aug. 2009, pp. 41–45.

[25] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

Xinhao Liu received the bachelor’s degree in
mechanical engineering from the Dalian University
of Technology, Dalian, China, in 2010, and the
master’s degrees in mechanical and control engineer-
ing from the Tokyo Institute of Technology, Tokyo,
Japan, in 2012, where he is currently pursuing
the Ph.D. degree. His research interests are in the
domain of image processing and computer vision.

Masayuki Tanaka received the bachelor’s and mas-
ter’s degrees in control engineering and the Ph.D.
degree from the Tokyo Institute of Technology,
Tokyo, Japan, in 1998, 2000, and 2003, respectively,
and joined Agilent Technology. He was a Research
Scientist at the Tokyo Institute of Technology from
2004 to 2008. He has been an Associate Professor
with the Graduate School of Science and Engineer-
ing, Tokyo Institute of Technology.

Masatoshi Okutomi received the B.Eng. degree
from the Department of Mathematical Engineer-
ing and Information Physics, University of Tokyo,
Tokyo, Japan, in 1981, and the M.Eng. degree from
the Department of Control Engineering, Tokyo Insti-
tute of Technology, Tokyo, in 1983. He joined the
Canon Research Center, Canon, Inc., Tokyo, in 1983.
From 1987 to 1990, he was a Visiting Research Sci-
entist in the School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, USA. In 1993, he
received the D.Eng. degree from the Tokyo Institute

of Technology for his research on stereo vision. Since 1994, he has been
with the Tokyo Institute of Technology, where he is currently a Professor in
the Department of Mechanical and Control Engineering, Graduate School of
Science and Engineering.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

