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ABSTRACT

The additive white Gaussian noise (AWGN) is usually as-
sumed in many image processing algorithms. However, these
algorithms cannot effectively deal with the noise from actual
cameras which is better modeled as signal dependent noise
(SDN). In this paper, we focus on the SDN model and propose
an algorithm to accurately estimate its parameters without any
assumption of the noise types. The noise parameters are esti-
mated by using the selected weak textured patches from a sin-
gle noisy image. Experiments on synthetic noisy images are
conducted to test the algorithm, which show that our noise pa-
rameter estimation outperforms the existing algorithms. And
based on our estimation, the performance of image processing
applications like Wiener filter can be effectively improved.

Index Terms— signal dependent noise model, noise mea-
surement, homogeneous patches, PCA, denoising

1. INTRODUCTION AND RELATED WORK

Noise is one of the main factors to degrade image quality.
Identifying the noise characteristics is of great importance for
image processing applications such as denoising, edge detec-
tion image segmentation and so on. An additive white Gaus-
sian noise (AWGN) is usually assumed in many noise level
estimation algorithms [1, 2]. However, the noise of an actual
camera is not AWGN and is better modeled as signal depen-
dent noise (SDN) whose standard deviation is represented by
a function of pixel intensity. The function which represents
the standard deviation of the noise or the noise level is called
the noise level function (NLF). It is desirable to build a prac-
tical algorithm to identify the NLF from a single image in a
robust manner. The NLF is modeled with several parameters.
Therefore the main goal of the SDN identification is to esti-
mate these NLF parameters. Liu et al. [3] addressed the SDN
estimation from a single image based on a piecewise smooth
prior model and estimated an upper bound of the NLF by fit-
ting the local mean and the local variance in each segment. In
[4, 5, 6, 7], homogeneous patches are firstly detected and then
the means and the variances of the detected patches are used
to estimate the NLF parameters. However, these algorithms
usually assume that at least one NLF parameter is known to
simplify the estimation. For this assumption, these algorithms
are not so practical.

The challenge in the SDN estimation is correct detection
of the weak textured patches or the homogeneous patches.
Once we have the weak textured patches, the NLF parameters
can be estimated by the maximum likelihood (ML) estima-
tor or other fitting algorithms. We have proposed a texture
strength metric based on the gradient matrix of the image
patch to detect the weak texture patches and a noise level
estimation algorithm for the signal independent AWGN [2].
In this paper, we propose the NLF estimation algorithm for
the SDN. The weak textured patches are selected by the same
manner as [2]. The NLF parameters are estimated based
on the means and the variances of the selected weak tex-
tured patches by the ML estimator. The experimental results
demonstrate that our proposed algorithm works well for vari-
ous scenes and outperforms the state-of-the-art algorithms.

2. PROPOSED SDN IDENTIFICATION

The main goal of the SDN estimation is to estimate the
NLF parameters. First, we introduce a general signal depen-
dent noise model with three parameters. Then, we propose a
NLF parameter estimation algorithm.

2.1. Signal Dependent Noise Model

A general signal dependent noise model has been pro-
posed to deal with different types of noise [8]. The observed
noisy pixel value can be expressed by:

g = f + fγ · u+ w, (1)

where g is the noisy pixel value, f is the noise-free pixel
value, γ is the exponential parameter, and u and w are zero-
mean random variables with variances σ2

u and σ2
w, respec-

tively. The variance of the generalized noise model is

σ2 = f2γ · σ2
u + σ2

w. (2)

By changing the three NLF parameters γ, σ2
u, σ2

w, this gener-
alized noise model can represent various types of noise such
as film-grain noise, multiplicative speckle noise, Poission
noise and others [8].

This generalized noise model is often used in the SDN
identification [4, 5, 6, 7]. The SDN identification with this-
general noise model is to estimate the three NLF parameters.



Existing SDN identification algorithms [4, 5, 6, 7] usually as-
sume that one parameter is known and thus only estimate the
remaining two parameters to simplify the problem. In con-
trast, the proposed SDN identification algorithm simultane-
ously estimate all the three parameters.

2.2. Patch-based approach

In our previous work [2], we have proposed the patch-
based noise level estimation algorithm for the signal indepen-
dent noise. For the SDN identification, we also apply the
patch-based approach. Firstly we extract the weak textured
patches. Then, using the weak textured patches, we estimate
the three NLF parameters assuming that the variance of noise
in the patch is constant. We need the noise-free pixel val-
ues and the noise variance of the patches to estimate the three
NLF parameters by the Maximum-Likelihood estimator. We
approximate the noise-free pixel values of the patches by the
mean values, assuming that the patches are flat with zero-
mean noise. We follow the same manner as in [2] for the
noise variance estimation. The noise variance of the patches
are estimated by the power of noisy patch along to the eigen-
vector associated to the minimum eigenvalue. The estimation
of the noise-free signal and the noise variance are:

f̂ =
1

N

N∑
j=1

gj

σ̂2 = ‖uTmin · g‖2, (3)

where f̂ is the estimation of the noise-free signal, gj is the
j-th pixel value in the observed patch, N is the number of
pixels in the observed patch, σ̂2 is the estimation of the noise
variance, g is the vector representation of the observed patch,
umin is the minimum eigenvector of the covariance matrix
of the extracted weak textured patches and T is the transpose
operator. We also apply an iterative framework same as in [2].
In the following section, we describe the weak textured patch
selection and the ML estimator.

2.3. Weak textured patch selection

We have proposed a texture strength metric and a weak
textured patches selection algorithm based on the texture
strength. We follow the same manner. The texture strength is

ξ = tr(GGT ), (4)

where tr(·) is the trace of the matrix, and G is the gradient
matrix defined by

G =
[
Dug Dvg

]
, (5)

where Du and Dv are the matrices which represent the hor-
izontal and vertical derivative operator, respectively. The

weak textured patches are extracted by thresholding the tex-
ture strength. The threshold has been derived based on the
statistical analysis as

δ = F−1(τ,
N

2
,
2

N
σ2tr(DT

uDu +DT
vDv)), (6)

where δ is the threshold of the texture strength, F−1(τ, α, β)
represents the inverse gamma cumulative function with shape
parameter α and scale parameter β, τ is the confidence level,
and σ2 is the noise variance of the patch. The threshold in
Eq.(6) is a function of the noise variance. The confidence
level is empirically set. In this paper, we use 0.99 for the con-
fidence level. The mean pixel value and noise variance are
firstly estimated according to the model in Eq.(3). Then the
threshold of each patch is determined by Eq. (6). As men-
tioned here, the noise variance is required to determine the
threshold. Therefore, we apply the same iterative framework
as in [2].

2.4. Maximum likelihood estimation

Using the selected weak textured patches, we identify the
three SDN parameters with estimations of noise-free pixel
values and the noise variance by the ML estimator. The like-
lihood with selected weak textured patches is

L =

M∏
k=1

1√
2πσ2(f̂k; γ, σ2

u, σ
2
w)

exp

{
− σ̂2

k

2σ2(f̂k; γ, σ2
u, σ

2
w)

}
,

(7)

where M is the number of selected weak textured patches, f̂k
is the mean pixel value of the k-th patch, σ̂2

k is the estimated
noise variance of the k-th patch. The cost function to be min-
imized can be derived from negative log-likelihood function
as

E(γ, σ2
u, σ

2
w) =

M∑
k=1

[
log σ2(f̂k; γ, σ

2
u, σ

2
w) +

σ̂2
k

σ2(f̂k; γ, σ2
u, σ

2
w)

]
.

(8)
We apply the gradient-descent algorithm to minimize the cost
function with respect to the three parameters γ, σ2

u, σ
2
w. The

gradient-descent algorithm requires the initial guess. In this
paper, we simply set zeros for three parameters.

3. EXPERIMENTAL RESULTS

3.1. Results on noise parameter estimation

The proposed algorithm1 is assessed by using synthesized
noisy images. We use natural images from BSD dataset [9]
and generate synthetic signal dependent noise according to

1MATLAB code is available on the author’s webpage. http://www.
ok.ctrl.titech.ac.jp/res/NLE



(a) Noisy image
(γ = 0.5, σu = 1.5, σw = 5)

(b) Selected weak
textured patches

Fig. 1. Results of weak textured patches selection for moun-
tain image.

the general noise model in Eq. (1). Several noise patterns
are synthesized by changing the three SDN parameters. The
mean value and standard deviation of each estimated param-
eter are evaluated. For each pixel intensity in the range of
[0, 255], the RMSE of estimated noise level,

RMSE =

√√√√ 1

256

255∑
i=0

‖σ2(i; γ̂, σ̂2
u, σ̂

2
w)− σ2

true,i‖2 (9)

is also calculated to evaluate the accuracy of the algorithm.
We compare the proposed algorithm with Torricelli’s algo-
rithm [5] and Zabrodina’s algorithm [7]. Note that the param-
eter σ2

w has to be known in Torricelli’s algorithm [5], and the
parameter γ has to be known in Zabrodina’s algorithm [7],
while the proposed algorithm can simultaneously estimate all
three parameters. The Fig.1 (a) shows an example of synthetic
noisy image and the yellow part in Fig.1 (b) is the selected
weak textured patches by the proposed algorithms. We can
see that most weak textured patches are correctly selected by
the proposed algorithm. The NLFs estimated by different al-
gorithms and the ground truth are show in Fig.2. We can find
that the NLF estimated by the proposed algorithm is closer to
the ground truth compared with the existing algorithms.

The statistic of estimated noise parameters and RMSE of
noise level functions tested on BSD image dataset are shown
in Table 1. For various setting noise parameters, the proposed
algorithm estimates the noise parameter and noise level more
accurately than the existing algorithms.

3.2. Results on image denoising

The accurate SDN estimation can improve the perfor-
mance of denoising. Although there are not so many re-
searches on the denoising filter for SDN, the adaptive Wiener
filter [10] is a well-known one. The Wiener filter can be
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Fig. 2. Noise level estimation results for mountain image.
(γ = 0.5, σu = 1.5, σw = 5)

expressed by:

f̂ = µ+
ν2 − σ2

ν2
(g − µ) (10)

where µ and ν2 are local mean and local variance of the neigh-
borhood and g is the observed pixel value. In theory, the pa-
rameter σ2 should be the local noise variance. Therefore we
can use the SDN estimation results. In some implementa-
tion like MATLAB default setting, the parameter σ2 is set to
be the average of all local variances. In this paper, we call
it the simple adaptive Wiener filter. We compare the sim-
ple adaptive Wiener filter and the adaptive Wiener filter with
three different SDN estimation algorithms: the proposed al-
gorithm, Torricelli’s algorithm [5], and Zabrodina’s algorithm
[7]. Table 2 shows the average PSNRs on BSD dataset with
different SDN parameters. We can see the better denoising
performance when using our SDN estimation.

4. CONCLUSION

In this paper, we have proposed an algorithm to estimate
the noise parameters of the generalized signal dependent
noise (SDN) model from a single noisy image. The noise
parameters are estimated based on correctly selecting of
the weak textured patches. The advantage of the proposed
method is that: it does not require any prior knowledge of
the noise type. The experiments on synthetic noisy image
data have shown that the proposed algorithm outperforms the
existing algorithms. And using our noise level estimation, the
denoising performance of the adaptive Wiener filter can be
effectively improved.
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