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ABSTRACT

A patch-based noise level estimation algorithm is proposed in this
paper, with patches generated from a single noisy image. One can
easily estimate the noise level from image patches using principal
component analysis (PCA) if the image comprises only weak tex-
tured patches. The challenge for patch-based noise level estimation
is how to select weak textured patches from a noisy image. As de-
scribed in this paper, we propose a novel algorithm to select weak
textured patches from a single noisy image based on the gradients
of the patches and their statistics. Then we estimate the noise level
from the selected weak textured patches using PCA. We demonstrate
experimentally that the proposed noise level estimation algorithm
outperforms the state-of-the-art algorithm.

Index Terms— noise level estimation, weak textured patch, im-
age gradient, PCA

1. INTRODUCTION AND RELATED WORK

A noise level or standard deviation of the Gaussian noise is nec-
essary for many image-processing algorithms and applications. For
instance, many denoising algorithms operate on the assumption that
the noise level is known a priori, which in fact is not valid in practical
circumstances. Image segmentation and smoothing can be improved
significantly if the noise level is known. However, in current studies,
the noise level is usually provided manually. It is therefore a chal-
lenge to assign an accurate noise level for a variety of input images,
especially for those with rich textures.

Many algorithms [1, 2, 3, 4] have been proposed for gray-level
image noise level estimation. Generally they are classifiable into
patch-based and filter-based approaches, or some combination of
them. Tai et al. [3] proposed a filter-based noise estimation method
that uses a Laplacian operator to suppress the image structure and
adaptive edge detection to exclude pixels associated with edges. The
main difficulty inherent in filter-based methods is that the difference
between the original and filtered image is assumed to be the noise,
but this assumption is not true for images with complex structures or
details. Shin et al. [4] proposed a patch-based algorithm in which an
image is split into numerous patches. Then smooth patches are se-
lected. Subsequently, the noise level is computed from the selected
patches. The main issue of patch-based methods is how to identify
the weak textured or smooth patches for various scenes in the pres-
ence of Gaussian noise. Different from the methods described above,
Zoran and Weiss [5] reported that the changes in kurtosis values of
noisy images are due to the noise presented in the image and the
change can be modeled to estimate the noise level. Their algorithm
can handle the low noise level situation quite well and achieves the
state-of-the-art result.

Existing texture strength measures such as variance can not re-
flect the underlying texture strength correctly in the presence of the

noise. In this paper, we propose a patch-based noise estimation al-
gorithm using principal component analysis (PCA) and a novel tex-
ture strength metric to select the weak textured patches. We inves-
tigate the relation between the proposed metric and the noise level
σn. Then we propose an iterative framework to select weak tex-
tured patches from the noisy image with different noise levels. The
experimental results demonstrate that our estimation method works
well for various scenes and that it outperforms the current leading
methods.

2. PROPOSED ALGORITHM

2.1. Noise Level Estimation Based on PCA

After decomposing the image into overlapping patches, we can
write the image model as

yi = zi + ni , (1)

where zi is the original image patch with the i-th pixel at its center
written in a vectorized format and yi is the observed vectorized patch
corrupted by i.i.d zero-mean Gaussian noise vector ni. The goal of
noise level estimation is to calculate the unknown standard deviation
σn given only the observed noisy image.

The image patches can be regarded as data in Euclidean space.
Let us consider the variance of the data projected onto a certain axis.
We can define the direction of the axis using the unit vector u. As-
suming that the signal and the noise are uncorrelated, the variance of
the projected data on direction u can be expressed as:

V (uTyi) = V (uT zi) + σ2
n , (2)

where V (yi) represents the variance of the dataset {yi}, σn is the
standard deviation of the Gaussian noise. We define the minimum
variance direction umin as

umin = argmin
u

V (uT zi) = argmin
u

V (uTyi) . (3)

Following the same manner of the maximum variance formu-
lation in [6], the minimum variance direction is calculable using the
PCA. The minimum variance direction is the eigenvector associated
to the minimum eigenvalue of the covariance matrix defined as

Σy =
1

N

N∑
i=1

(yi − μ)(yi − μ)T , (4)

where N is the data number and μ is the average of the dataset {yi}.

The variance of the data projected onto the minimum variance
direction equals the minimum eigenvalue of the covariance matrix.
Then we can derive the equation

λmin(Σy) = λmin(Σz) + σ2
n , (5)
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(a) s21 = 21830.30 (b) s21 = 14109.05 (c) s21 = 31.12

Fig. 1. Maximum eigenvalue s21 of patches of different types, weak
textured patches have smaller values.

where Σy signifies the covariance matrix of the noisy patch yi,
Σz denotes the covariance matrix of the noise-free patch zi, and
λmin(Σ) represents the minimum eigenvalue of the matrix Σ.

The noise level can be estimated easily if we can decompose the
minimum eigenvalue of the covariance matrix of the noisy patches
as Eq.(5). However, the decomposition problem is an ill-posed prob-
lem because the minimum eigenvalue of the covariance matrix of the
noise-free patches is unknown. Although this decomposition prob-
lem is an ill-posed problem in general, we can estimate the noise
level if we can select weak textured patches from the noisy images
as described below.

The weak textured patches are known to span only low-
dimensional subspace. The minimum eigenvalue of the covariance
matrix of such weak textured patches is approximately zero. Then,
the noise level can be estimated simply as

σ̂2
n = λmin(Σy′) , (6)

where Σy′ is the covariance matrix of the selected weak textured
patches.

Consequently, we can estimate the noise level easily if we can
select the weak textured patches from the noisy image. However,
the weak textured image patch selection also presents a challenging
problem, as discussed in the next subsection.

2.2. Weak Textured Patch Selection

Zhu and Milanfar [7] demonstrated that the image structure can
be measured effectively by the gradient covariance matrix. The gra-
dient covariance matrix, Cy, for the image patch y is defined as:

Cy = Gy
TGy

Gy =
[
Dhy Dvy

]
, (7)

where Dh and Dv respectively represent the matrices to represent
horizontal and vertical derivative operators. Much information about
the image patch can be reflected by the eigenvalue and eigenvector
of the gradient covariance matrix.

Cy = V

[
s21 0
0 s22

]
VT . (8)

The maximum eigenvalue of the gradient covariance matrix s21 re-
flects the strength of the dominant direction of that patch. The
larger maximum eigenvalue reflects the richer texture. For this
study, we use this maximum eigenvalue of the gradient covariance
matrix as the quantitative measure for the texture strength of the
image patches. Fig.1 shows three patches with different maximum
eigenvalues of the gradient covariance matrix. It might be read-
ily apparent that a smaller maximum eigenvalue of the gradient
covariance matrix indicates the smoother or the weaker textured
patch.

Unfortunately, the eigenvalue of the gradient covariance matrix
is sensitive to noise. However, we must select the weak textured

patches from the noisy image. Therefore, we analyze how the Gaus-
sian noise affects the eigenvalue of the gradient covariance matrix.
Considering a perfectly flat patch with N pixels where the Gaussian
noise with standard deviation σn is added, the noisy flat patch y can
be represented as

y = f + n , (9)

where f and n respectively represent the perfectly flat patch and
Gaussian noise. Because the gradients of the perfectly flat patch are
zero, following the derivation in [7] we can calculate the expected
gradient covariance matrix of the noisy flat patch as

E(Cy) = E(Cn) = E(

[
nTDT

hDhn nTDT
hDvn

nTDT
v Dhn nTDT

v Dvn

]
)

=

[
E(nTDT

hDhn) 0
0 E(nTDT

v Dvn)

]
.

(10)

Two diagonal components have the same statistical properties.
Therefore, we specifically examine the upper-left component. Let-
ting ξ(n) = nTDT

hDhn, we approximate the distribution of ξ(n)
by the gamma distribution to simplify the problem. Because the
moment generating function (MGF) uniquely determine the dis-
tribution, we show the MGF of the variable ξ(n) and the gamma
distribution. The MGF of the variable ξ(n) can be derived as

Mξ(t) = E(etξ(n))

=

∫
et·n

TDT
h Dhnpn(n)dn

=

∫
et·n

TDT
h Dhn 1

(2πσ2)
N
2

e
−nT n

2σ2 dn

=

N∏
i=1

1

(1− 2σ2tλi)
1
2

, (11)

where λi is the i-th eigenvalue of the matrix DT
hDh. The MGF of

the gamma distribution with the shape parameter α and scale param-
eter β is written as

Mg(t) = (
1

1− βt
)α =

N∏
i=1

1

(1− βt)
α
N

. (12)

Comparing Eq. (11) and Eq. (12), we approximate the MGF of the
variable ξ(n) by that of the gamma distribution with parameters:

α =
N

2
, β =

2

N
σ2
ntr(D

T
hDh) , (13)

where tr(DT
hDh) is the trace of matrix DT

hDh.
To select the weak textured patches, we define the null hypothe-

sis as “the given patch is a flat patch with the white Gaussian noise” .
We select the patches for which the null hypothesis is accepted. The
null hypothesis is accepted if the maximum eigenvalue of the gradi-
ent covariance matrix is less than some threshold. The threshold τ is
given with the given significance level δ and noise level σn as

τ = σ2
nF

−1(δ,
N

2
,
2

N
tr(DT

hDh)) , (14)

where F−1(δ, α, β) is the inverse gamma cumulative distribution
function with the shape parameter α and scale parameter β.

In the proposed weak textured patch selection algorithm, we
select the patches of which the maximum eigenvalue of the gradient
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Fig. 2. Flowchart of the proposed iterative noise level estimation
algorithm.

Fig. 3. Estimated noise level in each iteration (mountain image, true
σn = 25)

covariance matrix is less than the threshold given in Eq.(14). The
significant level δ must be given manually, for example 0.99. The
noise level is also necessary to determine the threshold. In short, we
can select the weak textured patches from the noisy image for the
given noise level.

2.3. Iterative framework for noise level estimation

As discussed in Section 2.1, the noise level can be estimated
easily if we can select the weak textured patches. To select the weak
textured image patches, the noise level is required as described in
Section 2.2. That poses a chicken-and-egg problem. To solve that
chicken-and-egg problem, we introduce an iterative framework. Our
iterative noise level estimation process is presented in Fig. 2.

First, an initial noise level σ
(0)
n is estimated from the covariance

matrix, which is generated using all patches in the input noisy image.

Based on the k-th estimated noise level σ
(k)
n , the (k + 1)-th thresh-

old τ(k+1) is determined. The weak textured patch dataset W(k+1)

is selected from the noisy image using the threshold τ(k+1). Then

the (k+1)-th noise level σ
(k+1)
n is estimated using selected W(k+1)

with the threshold τ(k+1). This process is iterated until the estimated
noise level σn is unchanged. Although the convergence of this it-
eration process is not theoretically guaranteed, we have confirmed
experimentally that this iteration process converges after several it-
erations. One example of the estimated noise level of each iteration
is shown in Fig. 3.

(a) Noise level estimation result

(b) Original image (c) Weak textured part
(σn = 1)

(d) Weak textured part
(σn = 25)

Fig. 4. Noise level estimation results of mountain image, where the
yellow region represents selected weak textured patches.

3. EXPERIMENTAL RESULTS

We compare the proposed method 1with results obtained using
existing methods by different scenes with different noise levels. The
estimation results are conducted directly from the noisy images for
each noise level. The patch size we used is 7 × 7 and the noise
level σn is from 1 to 25. One hundred natural images in the test
set of Berkeley Segmentation Database (BSD) [8] are used for the
experiments.

Fig. 4 portrays a scene of mountain, which contains both weak
and rich textured regions. Because of the large amount of rich tex-
tures, the methods by Zoran and Weiss in [5] and Tai et al. in [3]
overestimate the noise level. The proposed method can select and
use only the weak textured region (yellow parts in (c) and (d)), the
estimation results are more accurate as shown in (a). Fig.5 portrays
a difficult scene called gravel. The whole image includes fine detail,
which causes most methods to overestimate the noise level greatly.
Since this image includes no obvious weak textures, in the low noise
level cases, few patches are selected as shown in (c). As the noise
level increases, e.g. σn = 25, even human vision is unable to dis-
tinguish the textures from the noise. Even though selected patches
might contain some rich textured regions as (d) in this case, the pro-
posed method achieves a better noise level estimation.

Table 1 shows the average, standard deviation, and root mean
square error (RMSE) of estimated noise levels from the 100 images.
The standard deviation reflects the ability of the estimator to deal
with a variety of natural scenes. The RMSE is a good measure of
precision for the estimator. From that comparison, significant im-
provement in the standard deviation and RMSE is apparent, which
indicates that the proposed method is more accurate, more stable,
and more scene-independent.

Noise level is an extremely important parameter for many
image-processing applications. A typical one is blind denoising.
BM3D, proposed by Dabov et al. [9], is one of recent state-of-the-
art non-blind denoising algorithms. To verify the estimated noise

1MATLAB code is available on the author’s webpage. http://www.
ok.ctrl.titech.ac.jp/res/NLE/WTP.html
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Table 1. Results for the Berkeley Segmentation Dataset (100 images), showing the average and the standard deviation of estimated noise
levels, and root mean square error (RMSE) between the estimated noise level and the true noise level. Bold font represents better results.

True noise level
Zoran and Weiss [5] Tai et al. [3] Proposed method

Average Std. dev. RMSE Average Std. dev. RMSE Average Std. dev. RMSE
1 2.129 1.662 1.986 2.059 1.574 1.890 1.512 0.986 1.105
5 4.993 1.464 1.455 5.761 1.083 1.320 5.285 0.429 0.507
10 9.741 1.589 1.602 10.635 0.825 1.038 10.282 0.389 0.470
15 14.643 1.606 1.637 15.553 0.677 0.871 15.254 0.336 0.395
20 19.582 1.645 1.689 20.482 0.613 0.778 20.127 0.308 0.327
25 24.464 1.649 1.725 25.458 0.549 0.713 25.057 0.384 0.386

Table 2. Average PSNR value of denoised image from the Berkeley Segmentation Dataset (100 images). The denoising algorithm is BM3D
[9]. Bold font represents better results from estimated noise levels .

True noise level (PSNR)
Ground truth+ BM3D[9] Zoran [5] + BM3D[9] Tai [3] + BM3D[9] Proposed method + BM3D[9]
Average Std. dev. Average Std. dev. Average Std. dev. Average Std. dev.

1 (48.13) 49.094 0.703 44.141 3.588 47.424 3.050 48.651 2.012
5 (34.15) 37.432 1.743 36.966 2.171 36.830 2.155 37.382 1.783
10 (28.13) 33.133 2.151 32.965 2.305 32.824 2.392 33.133 2.151
15 (24.61) 30.880 2.340 30.789 2.430 30.719 2.496 30.900 2.341
20 (22.11) 29.417 2.457 29.363 2.520 29.326 2.562 29.446 2.444
25 (20.17) 28.368 2.520 28.340 2.553 28.368 2.548 28.394 2.509

(a) Noise level estimation results

(b) Original image (c) Weak textured part
(σn = 1)

(d) Weak textured part
(σn = 25)

Fig. 5. Noise level estimation results of gravel image, where the
yellow region represents selected weak textured patches.

level, here we apply the different estimated noise levels to the BM3D
algorithm and obtain the PSNR value of the denoised image. Com-
parison of the results is shown in Table 2. The proposed method
achieves the best result among the practically estimated noise levels.

4. CONCLUSION

As described in this paper, we proposed an algorithm to select
weak textured patches from the images corrupted by the Gaussian
noise. We applied the PCA technique to estimate the noise level
based on the weak textured patch dataset. We use the maximum
eigenvalue of the image gradient covariance matrix as the metric for
texture strength and discuss how it changes with different noise lev-
els σn. In contrast to state-of-the-art methods, the proposed method
is more scene-independent and presents significant improvement for
both accuracy and stability for a range of noise levels in various

scenes.
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