
mulTetris - a Test of Graspable User Interfaces in
Collaborative Games

Samuel Audet, Matios Bedrosian,
Cyril Clement, Monica Dinculescu

McGill University
3480 University Street

Montreal, Quebec
saudet@cim.mcgill.ca, mbedro@ece.mcgill.ca,
ccleme6@cs.mcgill.ca, mdincu@cs.mcgill.ca

ABSTRACT
Most PC games are limited to a keyboard and a mouse, where
the physical capabilities of the human hand are not fully taken
advantage of. Based on Tetris, a traditionally single player
keyboard-game,mulTetrisbrings a new easy-to-use interface
involving a brick-like device as part of a collaborative game.
In mulTetris, the controlling brick is tracked by a camera and
is used to directly manipulate the tetrominoes. The interface
is easy to learn and natural, using either the user’s existing
skills, or easily transferable ones. This paper discusses each
of development stages ofmulTetris, the iterative design, as
well as the HCI principles used in the development of the
final system.

ACM Classification H5.2 User Interfaces - Graphical user
interfaces.

General TermsDesign, Human Factors

KEYWORDS: Tetromino, brick, two-handed interaction,
magnet metaphor, collaborative interface

INTRODUCTION
mulTetrisis a Graspable User Interface[3] concept based on
the traditional Tetris game. The user can move and rotate
falling tetrominoes (blocks of predefined shape) in such a
way that they align and form complete lines at the bottom of
a board. The falling rate of the tetrominoes increases with
time, and the game is over when a tower of tetrominoes has
reached the top of the board.

The mulTetrisinterface is designed as a collaborative, two-
handed interaction system, making use of the magnet metaph-
or. It is aimed to use natural mappings, existing or easily
transferable skills in order to improve the interaction between
the user and the system. Two physical artifacts, henceforth
referred to as “bricks”, are used to interact with the game
tetrominoes displayed on a horizontal screen. The user can
manually interact with the falling tetrominoes by moving or

rotating the bricks, thus taking advantage of kinesthetic feed-
back, and lessening the cognitive load.

Figure 1. User interacting with themulTetrisalpha sys-
tem.

In addition,mulTetrisis a one-input one-output system. The
output system is represented by a horizontal display screen,
while the input system consists of a colour video camera cou-
pled with computer vision software to track the position and
the orientation of the controlling bricks. The computer vi-
sion software, dubbed CV4HCI, is based on OpenCV[4], an
open source computer vision library written in C by Intel.
CV4HCI adds functionality on top of OpenCV, and is used
to track the position of the bricks.

RELATED WORK
Tangible user interfaces[1], as introduced by Ullmer, use
physical objects as representations and controls of digital
models. For example, the BuildIT system uses brick-shaped
physical handles in creating furniture layouts[2], while the
Zowie system allows the user to manipulate physical models
of game characters to interact with a virtual play set[1].

ActiveDesk[3] developed by Fitzmaurice, Ishii and Buxton
is a similar Graspable User Interface system. The interface
allows the user to control virtual objects through physical ar-
tifacts that become the input devices, or control handles.



Krueger’s VideoDesk [5]is an early desk-based system that
allows the user to interact with projections. An overhead
camera detects the user’s hand and body position, while a
horizontal light provides high-contrast gesture input for in-
teractions.

SYSTEM OVERVIEW
The Magnet Metaphor
From the user’s perspective, the brick can be thought of as
a magnet, and the tetrominoes as metal pieces, placed un-
derneath the display screen. Placing the brick on top of the
screen causes the tetromino to become selected, and to be
“attached” to the brick. Moving or rotating the brick will
also move or rotate the tetromino. This is a very natural ac-
tion, as moving a magnet will also move any metal objects
physically attached to it. Finally, raising a brick away from
the screen will de-select the tetromino, and remove the at-
tachment to the tetromino.

Perceived affordances (such as highlighting) were added to
the tetrominoes to suggest whether a tetromino is attached to
a brick or not.

Graspable User Interface
Mackenzie introduced the idea of prehensile behaviour, which
he defined as "... the application of functionally effective
forces by the hand to an object for a task, given numerous
constraints."[6] ImplementingmulTetrisas a Graspable User
Interface employs existing motor skills, as well as kinesthetic
feedback, allowing the user to directly interact with the brick
and thus with the virtual tetrominoes.

In addition, Graspable User Interfaces diminish what Raskin
considers to be the “Operating System” problem of modern
Graphic User Interfaces: introducing an intermediate layer
between a user and an application. In the case of the tradi-
tional Tetris interface, the user is forced to use an unnatu-
ral device, such as a keyboard, in order to control physical
blocks. This does not aid the interface, as the user needs
to create an additional mapping between the keyboard keys
and the direction of movement/rotation of a tetromino. How-
ever, inmulTetris, this mapping is not needed: the user can
physically move or rotate the brick as he/she would want the
tetromino to move or rotate.

By removing the additional mapping, as well as taking ad-
vantage of prehensile behaviour, the user’s cognitive load is
lessened.

Two-handed Interaction
Another important advantage of Graspable User Interfaces is
that they encourage two-handed interactions by using spatial
reasoning and kinesthetic memory.

Studies performed have shown that tactile/kinesthetic feed-
back allows a user to engage in other tasks, while manipulat-
ing a physical object[3]. In addition, users can, and prefer to,
perform at least two different operations in parallel: moving
and rotation of a physical object.

It is important to note that allowing a tetromino to be moved
and rotated simultaneously is the main advantage of themul-
Tetris interface. Combined with the use of muscle mem-

ory, the mulTetris interface allows a user to find the most
appropriate location for a given tetromino, and simultane-
ously move the tetromino to that location, without needing
to change the visual focus.

Input System
The input system consists of a colour video camera, cou-
pled with the CV4HCI computer vision software. CV4HCI
is used to track the bricks and pass on their position, size and
orientation tomulTetrisrunning in a Java Virtual Machine.

The main components of the system are CAMSHIFT[7] (see
section 6 for details), a fast colour tracker used with a maneu-
vering Kalman filter to smooth out noise from the tracking
information, and a control panel used to adjust parameters of
the CAMSHIFT tracker and receive proper feedback on its
performance.

DESIGN STRATEGY
HCI Principles
A successful user-centered design requires attention to essen-
tial HCI principles. Specific guidelines, such as the follow-
ing three principles of system design as suggested by Gould
[8]were followed, to ensure the consistent development of
mulTetris:

1. Early Focus on Users and Tasks: Paper prototypes and a
very simple functional prototype in the early design stages
helped us discover some limitations of the brick interface,
such as the rotation mechanism employed; the early design
change allowed us to user-test the new rotation concept be-
fore introducing it in the final system.

2. Empirical Measurement: At each stage, from paper pro-
totyping to the alpha system, the feedback given by the
evaluators was thoroughly analyzed; any problems that ap-
peared were discussed and resolved in the following re-
leases of the system.

3. Iterative Design: Closely related to the previous step, user
comments and complaints regarding a certain stage were
taken under consideration leading to several iterations of
design, implementation, testing, and re-design.

Usability Heuristics
Also, the group’s strategy was heavily centered on the fol-
lowing HCI usability heuristics[9]:

• Aesthetic and Minimalist Design: The Graphic User Inter-
face does not contain any irrelevant or rarely needed infor-
mation.

• Visibility of System Status: All the available options are
made clearly visible to the user. In addition, enough feed-
back is given to inform of the result of a specific action.
The user’s score and other information, as well as the pre-
view boards showing the next tetrominoes are easily found
without interfering with the gameplay.

• Recognition Rather than Recall: The options available are
displayed in such a way to be easily recognizable. Further-
more, should the user need additional help, game instruc-
tions can be readily accessed through a help button.



• Consistency and Standards: Careful attention was paid to
the use of consistent terms, as to avoid user confusion. For
example, the term “brick” always refers to the physical
device used to interact with the game, while “tetromino”
refers to the virtual objects in the game.

• Recovery from Errors / User Control and Freedom: The
user may restart the game at any time, for example if he/she
made a strategic mistake. Moreover, like most games, the
game may be paused at the user’s discretion.

SYSTEM EVOLUTION
The development ofmulTetrisconsisted of four main stages.
Each new release included interface improvements from the
previous and was evaluated by various groups who may or
may not have been familiar with HCI principles depending
on the type of results required (for example, it was important
that during usability tests, a user with no HCI knowledge
was asked to participate, in order to determine how usable
and easy to learn the interface was).

Initial Paper Prototype
A small group of users were asked to participate in a guided
paper prototyping session. The users had experience with the
traditional keyboard & mouse Tetris games and were gener-
ally unfamiliar with the principles of HCI. Comments and
suggestions on the concept of controlling tetrominoes with a
’brick’ in an environment absent of a keyboard and mouse
were sought. The techniques presented by Snyder [10] were
used during the sessions.

The paper prototype used a Lego block to represent the con-
trolling brick. Selection was performed by placing the brick
directly above the desired tetromino. Moving the brick away
from the same tetromino would deselect it. Once the tetro-
mino is selected, the user could then translate it anywhere but
upwards, as in the actual game. The rotation mechanism was
designed such that once the brick has been rotated, the tetro-
mino would keep rotating at a speed determined by the angle
of rotation of the brick (i.e. the greater the angle made by the
brick and its initial axis, the faster the tetromino would ro-
tate, where 0 and 180 degrees represented the normal stopped
state).

Some of the comments received after the tests were:

• Magnet Metaphor: The brick tool was compared to a mag-
net by some of the users. This showed us that the selection
of tetrominoes was very well understood.

• Rotation: This aspect proved to be problematic. Users
were not able to grasp quickly that the rotation angle of
the brick controlled the tetromino rotation speed.

• Collision Detection: Since multiple tetrominoes will fall
during the game, it is possible that two or more may col-
lide before landing during gameplay. This issue was not
addressed before.

• Use of Two Bricks by a Single User: Although not intended
for this purpose, some users liked to use both hands to con-
trol two bricks simultaneously.

Preliminary Software Prototype
Many of the limitations of the paper prototype - such as an-
imation and response time - were overcome by the software

prototype. The latter was developed in Java 1.5 and the brick
interface was implemented using a keyboard and a mouse.
The functions provided to the user included tetromino selec-
tion, translation, and rotation in a “practice” mode setting. At
this stage, specific feedback about the interface and the ma-
nipulation of tetrominoes, and not the actual gameplay was
desired. Hence, the prototype asked the user to go through
four tasks each exploring the different types of tetromino ma-
nipulation (see Figure 2). Later on, the user was given the
chance to compare the original keyboard-only interface with
the new design. Throughout the tasks, the prototype stored
the completion times and number of restarts for quantitative
analysis.

Figure 2. Translation of a tetromino

The rotation method was changed in this prototype. We de-
cided that instead of using the increasing rotation speed con-
cept, a transmission-like brick would be used: a rotation of
22.5 degrees (π/8 rads) will rotate a tetromino by 90 degrees
in the same direction. Hence, only a 90 degree brick rotation
is required to produce a full 360 degree tetromino rotation.
Such a device would not exceed the human hand’s articula-
tory limits, like a direct mapping of the brick’s rotation to a
tetromino’s rotation would.

Implementation

• Input data from the mouse and keyboard was handled by
the Java events manager. As mentioned earlier, the brick
was simulated by a mouse as follows:

• Moving the mouse laterally while holding the SHIFT key
simulated the brick rotation.

• Pressing the left mouse button was equivalent to bringing
the brick down on top of the screen and selecting the tetro-
mino below it.

• Releasing the left mouse button was equivalent to raising
the brick away from the screen, and deselecting the tetro-
mino previously selected; this caused the simulated brick
to return to its default orientation, i.e. perfectly aligned on
the vertical axis.

Evolution of the Software Prototype

The evaluating team appreciated the “easy-to-use” interface
and its consistency with a typical Tetris game. Specifically,
the selection process involving a mouse click on the block



was very well understood. Furthermore, the quantitative
analysis showed improved performance regarding the rota-
tion of a tetromino.

Alpha System
The previous prototype ofmulTetris involved the keyboard
and mouse. However, the alpha system was implemented
using a visual tracking system, while coloured brick-like ob-
jects were used to interact with game. The setup consists of
a laptop, with its screen laid completely horizontally, and a
camera facing down perpendicularly to it (see Figure 3). As
opposed to the previous prototypes which were entirely prac-
tice oriented, the user has the chance to play a complete tetris
game, keeping score.

Figure 3. The hardware setup of the alpha system con-
sisting of a laptop, camera and post-its.

Although still subject to improvements, the alpha system rep-
resented the concept of the final design. The limitations of
the system were:

• The alpha system used solid coloured blocks of post-its to
represent the controlling bricks. Post-its were chosen be-
cause of their colour intensity, thus making their tracking
and detection easier. Also, before proceeding into using
custom made translucent blocks, it was imperative to first
ensure the functionality of the tracking system with read-
ily available objects. The next release uses such blocks, so
that the user can see through the block and receive visual
feedback from the tetromino (i.e. selection, rotation...).

• The bricks could not be used to navigate around the sys-
tem. Thus, to start/pause a game, to get help and to switch
between game and practice mode, a conventional mouse
was still needed. The beta system involves solely translu-
cent blocks as described above.

• The installation of the system is rather clunky and incon-
venient, due to the calibration process. The final system
provides for a simpler installation.

Implementation

In the alpha system, with the real brick device, it was obvi-
ously impossible to make the brick go back to a default ori-
entation, nor force the user to hold the brick orientated along
the vertical axis when selecting a tetromino.

The implemented solution was to consider the vertical de-
fault axis to be the initial axis of the brick oriented by the
user when selecting a tetromino. The tetromino would only
be rotated if the angle of rotation is more thanπ/8 relative to
the new axis. The user can select tetrominoes with the brick
orientated in any direction then translate the selected piece
without rotating it as long as the original orientation is kept.

Since the brick does not have any buttons, it was decided that
selection and deselection would be detected by the height of
the brick from the screen (i.e. the user has to raise the brick
to deselect and bring it back on screen to select again). Two
different approaches were considered:

• A second camera was placed beside the screen to record all
the vertical variations of the brick: if the brick was raised
above a specific height it was considered as an deselection;
there was a lot of trouble if the user positioned his fingers
on the side of the brick;

• The first camera could also be used to notice variations in
the area of the brick: if the area is bigger it means that the
brick is raised, closer to the camera, which is considered
as an deselection; this was the solution adopted.

Input is handled with CV4HCI. All the data pertaining to the
state of the bricks are constantly fed to the system through
a handler method. The latter simply gives as parameters, ar-
rays indicating the position, angle and change in the selection
state for all the bricks.

Evaluation of the Alpha System

A second evaluation team tested the new system, keeping
HCI principles in mind, and provided the following feed-
back:

• Calibration: As expected, it was suggested that providing
an automated process would make the setup and running
of the application easier.

• Selection: It was found that the user is prone to make mis-
takes when selecting and deselecting a tetromino with the
brick. Having a LED attached to the brick that flashes,
when a button is pressed, and is recognized by the camera,
was suggested.

• Bricks: The team confirmed the need of translucent bricks
to allow a clear view of the tetromino. It was also com-
mented that they were too “square-shaped” and a more



elongated device would prevent tracking disruption caused
by occlusion with the hand.

• Interface: Initially, the three preview boards in the alpha
system were aligned vertically on the right. It was sug-
gested to place them horizontally on top instead to provide
a better visual mapping.

• Rotation: It was suggested to useπ/6 increments instead
of π/8 to allow for smoother rotation since it would require
the user to rotate the brick slightly more to get the same
effect.

Beta System
The next version addresses the issues discussed earlier. In-
stallation and setup have been greatly improved, as calibra-
tion is now an interactive process which can be triggered
from a menu item. The user is asked to move a brick to
the four corners of the screen then center it when done. Built
upon one of the suggestions given by the alpha system eval-
uators, the user will be given the option to change the default
angle required to detect rotation.

Implementation

During the calibration, the software will take note of the fol-
lowing information:

• Minimal and maximal values for the x and y axes (will be
used to map the coordinates from the camera’s frame of
reference to that of the computer screen);

• Dimension of the brick (will be used to select a tetromino
with any part of the brick, see below for more details);

• Area of the brick located just on the top of the screen (vari-
ations in the area will be used to detect selection/deselection,
see the implementation of the alpha system for more de-
tails).

In the alpha system, in order to select a tetromino, the user
was required to bring the brick on screen such that the center
of the brick was exactly over one of the tetromino’s squares.
This was inconvenient and unnatural, as a tetromino could
not be selected by a smaller part of the brick (e.g. a corner).

In the beta system, due to the new calibration process, the
system is aware of the dimension of the brick. As such, it is
now possible to know whether a part of the brick is overlap-
ping a part of a tetromino.

However, if the user unintentionally brings a small part of the
brick over a small part of a tetromino, it would probably be
not expected for the tetromino to be selected. To solve this
issue, the selection will only be effective if a pre-defined min-
imal area of the tetromino is covered by the brick. Similarly,
if the brick overlaps two different tetrominoes, the tetromino
covered by the largest area of the brick will be the one se-
lected (provided regular selection requirements are satisfied).
To further prevent accidental selections, the brick will be re-
quired to remain over the desired tetromino for a preset time
(e.g. 200 ms). This is preferred over the earlier suggestion
of adding a LED and a button to the brick, as it minimizes
the actions needed to be made by the user, thus lessening the
cognitive load.

Furthermore, it was decided to keep the preview boards in

their original position since due to the laptop’s screen size,
it was desired to have maximal height for the game board.
Width was an acceptable trade off, despite that having the
preview boards vertically aligned on the side does not present
a very direct mapping.

Finally, we have agreed with the evaluators of the alpha sys-
tem that a more elongated brick is desirable. The bricks of
the beta system are translucent and approximately 2 by 1
inches and an inch thick.

CAMSHIFT Algorithm
Algorithm Description
The CAMSHIFT (Continuously Adaptive Mean Shift) algo-
rithm was designed to track coloured objects (in our case,
the bricks). One of the main advantages of this technique is
that it can efficiently track an object in real time. More com-
plex methods give better results, but have a hard time running
in real time on today’s personal computers. This method was
also designed to run adequately on cheap video cameras (i.e.:
Webcams). In this section, we will described in some details
the way it works.

First, the tracker needs to be "trained". The model of the ob-
ject that is kept in memory is a simple histogram represent-
ing the distribution of the colours of the object. As colour
information, typically and as used by CV4HCI, the H chan-
nel (hue) of the HSV colour space is used. As "training set",
an area of the object can be selected by the user as described
in the next section. The histogram is scaled so that the maxi-
mum fixed-point value is 255 (i.e.: "probability" = 1.0). This
does not make for a real probability mass function, but is
used as such. Typically, 16 bins are used. Models with larger
numbers of bins have a greater hue discrimination power, but
might not work well enough under varying lighting condi-
tions, since the hue changes even when just the angle of the
incident light on the object changes.

Then, after training, in order to track the object, a "colour
probability distribution image" needs to be computed. The
process starts by converting the whole camera image into the
HSV colour space. For each pixel, the hue value is used as an
index into the histogram bins. The corresponding histogram
bin value is used as the "probability" of the pixel being of the
colour of the tracked object. This bin value is stored into the
"colour probability distribution image".

This colour probability distribution image is then used with
the CAMSHIFT algorithm in order to track the coloured ob-
ject. An initial window size (either the whole image or from
the user selection as described in the next section) is used as
a starting point for the CAMSHIFT algorithm. This iterative
algorithm alternates between two sub-algorithms until con-
vergence (until the window movement and adaptation is neg-
ligible): the mean shift algorithm, and the window size adap-
tation. The mean shift algorithm is also iterative. For each
iteration until convergence (when the window shift is mini-
mal), the mean of the pixels (centroid or center of gravity)
in the window is located, and the window is shifted (moved)
to this location. For the window size adaptation, the window
size is set to a function of the zeroth moment of the pixels in
the window (which is related to their area).



The rest of the image moments of the pixels in the win-
dow are then computed to find the orientation and the axis
lengths. The recovered tracking information (window posi-
tion, axis lengths, and orientation) can be quite noisy, so it is
then smoothed using a standard maneuvering time-correlated
velocity Kalman filter (a simpler version of the Singer accel-
eration model [11]). The filtered data is then sent tomulTetris
as input. Also we want our program to select a tetromino
when the user places the brick on it. With the information
available, the best option is to use the two axis lengths as
an indication of the "height" of the brick with regards to the
camera. However, if the user does not hold the brick flat and
unobstructed under the camera, this procedure breaks down.

CAMSHIFT Setup with CV4HCI

In order to train and setup the parameters for CAMSHIFT,
CV4HCI comes with a view panel written in Java as seen
in Figure 4. Two separate trackers are used to track two
differently coloured bricks. More tracker can be used de-
pending on available processing power. One can switch the
view from Camera, BackProject (the colour distribution im-
age) or Histogram. To train a tracker, one can simply select
a region from the Camera View. An ellipse then shows the
currently tracked object and its information (position, axis
lengths and orientation). As for the parameters, Vmin indi-
cates the minimum value of V from the HSV colour space a
pixel has to have to be considered. Ignoring those pixels can
help since the hue value becomes a lot noisier for low V val-
ues. The same concept applies to Vmax (maximum V value),
and Smin (minimum S value), which helps CAMSHIFT ig-
nore washed out or pastel colours respectively. Min Area,
the minimum zeroth moment (i.e.: summation of the back-
project pixels in the window), is used to detect when a track
is "lost". If this value is not reached, the window size is reset
to the image size.

Figure 4: CAMSHIFT setup with CV4HCI

As can be understood from this brief discussion of the re-
quired parameter setup, it can be quite involved. For this
reason, parameters and training information (the histogram)
can be saved to file and reloaded. If however the environment
happens to change (lighting conditions, non-constant camera
settings), the setup has to be redone. This is the current main
limitation to the wide acceptance by the public of such an
interface.

CONCLUDING REMARKS AND FUTURE WORK
By using an iterative design process as well as frequent us-
ability testing,mulTetrishas been developed as an easy-to-
use game, making use of the user’s already existing skills.
Taking advantage of prehensile behaviour and kinesthetic
feedback, the interface reduces the cognitive load, as the user
does not need to concentrate on how to move the physical
bricks, and can use muscle memory to infer their location.

The concept of the controlling brick could not be fully de-
veloped due to technical limitations of the system. Due to
the small setup, small bricks had to be used and users often
gripped them completely, thus covering a large portion with
their hands. As a result, the bricks were not visible to the
camera, and their position could not be tracked. Future work
could involve a pressure sensitive screen, where the tracking
of the brick would be done by a set of touch sensors. This
would be less intrusive, as the user could handle or grip the
brick in any way he/she feels more comfortable, without af-
fecting the usability of the system.

Furthermore, the camera is currently used over a flat screen,
but to avoid tracking problems that appear when the user
hides the brick from the camera, as well as to improve the
selection mechanism, a hardware setup using video back-
projection and a camera looking from behind, such as in
Ullmer’s metaDESK [12], should be evaluated.

With a better tracking mechanism, mulTetriscan be used to
evaluate the importance of Graspable User Interfaces in the
context of collaborative games.

REFERENCES
1. Ullmer, B., Ishii, H., Emerging frameworks for tangible

user interfaces, IBM Systems Jour-nal, 2001
http://www.research.ibm.com/journal/sj/393/part3/ull-
mer.html

2. M. Fjeld, M. Bichsel, and M. Rauterberg, BUILD-
IT: An Intuitive Design Tool Based on Direct Object
Manipulation, Gesture and Sign Language in Human-
Computer Interaction, Lecture Notes in Artificial In-
telligence, Vol. 1371, Wachsmut and Frhlich, Editors,
Springer-Verlag, Berlin (1998), pp. 297308
http://www.idemployee.id.tue.nl/g.w.m.rauterberg/pu-
blications/GW98paper.pdf

3. Fitzmaurice, G., Ishii, H., Buxton, W. ,Bricks: Lay-
ing the Foundations for Graspable User Interfaces, Pro-
ceedings of ACM CHI 1995 Conference on Human
Factors in Computing Systems, p. 442-449.

4. OpenCV. Intel Corporation. 2005.
http://www.intel.com/technology/computing/opencv/



5. Krueger, M., Artificial Reality II. Addison-Wesley,
New York, 1991.

6. MacKenzie C, Iberall T: The Grasping Hand. Elsevier,
1994.

7. Bradski, G.R., Computer vision face tracking as a com-
ponent of a perceptual user interface. In Workshop on
Applications of Computer Vision, p. 214-219, Prince-
ton, NJ, Oct. 1998.

8. Gould, J.D., Boies, S.J., Levy S., Richards, J.T. and
Schoonard, J. The 1984 Olympic Message System: A
Test of Behavioral Principles of System Design. Comm.
of the ACM. 30, 9 (Sept. 1987), 758-769.

9. Nielsen, J. Heuristics for User Interface Design.
http://www.useit.com/papers/heuristic/heuristic_list.html,
1994.

10. Snyder, C. Paper Prototyping, December 2003.
http://www-128.ibm.com/developerworks/library/us-
paper/?dwzone=usability

11. Li, X.R, Jilkov, V.P. Survey of Maneuvering Target
Tracking. Part I: Dynamic Models. IEEE Transactions
on Aerospace and Electronic Systems, 39(4):1333–
1364, Oct. 2003.

12. Ullmer, B., Ishii, H., The metaDESK: Models and Pro-
totypes for Tangible User Interfaces, Proceedings of the
ACM UIST’97 Symposium on User Interface Software
and Technology, 1997, p. 223-232.


