
ECSE 526 - ARTIFICIAL INTELLIGENCE, FINAL PROJECT, APRIL 7, 2006 (REVISED MAY 7, 2006) 1

Offline Signature Verification Using
Virtual Support Vector Machines

Samuel Audet, ID: 260184380, Peyush Bansal, ID: 110223002, and Shirish Baskaran, ID: 110232333

Abstract— Offline signature verification is the art of properly
classifying between one’s real signature and reasonably good
forgeries from after-the-fact (scanned or otherwise captured)
images. For this project, we implemented a technique of signature
verification using Virtual Support Vector Machines. A testing
procedure was devised and the results were analyzed and written
in this report. When compared to SVM classification without
virtual signatures, it was found that the use of Virtual SVM
with invariant rotation and translation transformations has a
small detrimental effect on the error rate, but reduces the false
rejection rate at the expense of the false acceptance rate which
increases significantly.

Index Terms— signature verification, image processing, sup-
port vector machines, classifiers, sequential minimal optimiza-
tion, virtual examples, virtual support vector machines, invariant
transformation.

I. INTRODUCTION

OFFLINE signature verification is the art of properly clas-
sifying between one’s real signature and reasonably good

forgeries from after-the-fact (scanned or otherwise captured)
images. Signing is a very conventional, efficient and simple to
use biometric authentication method for humans and has been
used extensively for legal purposes for centuries now. With re-
cent advances in computer vision, computational performance
and classifier technologies, it might soon be possible to let
computers autonomously verify signatures found on checks
and other legal documents with limited human intervention.

We chose to implement such an offline signature verifi-
cation system for our final ECSE 526 course project using
trainable Support Vector Machine classifiers. First, we will
briefly describe the image processing needed to extract feature
vectors. Then, the SVM algorithm itself as well as our SMO
implementation are detailed. Finally, we will talk about our
testing procedure as well as present and analyze test results.

In this report, we will refer to only three kinds of signatures:
genuine signatures, random forgeries and skilled forgeries
(Fig. 1). Genuine signatures are the real signatures of a given
person. Random forgeries are genuine signatures from other
people. Skilled forgeries are actual imitations of the genuine
signatures of interest.

II. SIGNATURE IMAGE PROCESSING

In the case of normal character recognition, the image of
the character itself is fed as the feature vector to the SVM

Report created on April 7, 2006; revised May 7, 2006, McGill University,
Montréal, Québec.

Samuel Audet <saudet@cim.mcgill.ca> is with the Centre for Intelli-
gent Machines. Peyush Bansal <peyush.bansal@mail.mcgill.ca> and Shirish
Baskaran <shirish.baskaran@mail.mcgill.ca> are with the Electrical and
Computer Engineering Department.

Fig. 1. Types of signatures (from [1]).

algorithm. However, in the case of signatures, the feature
vector would be too large (for example, a typical signature
image of 400 × 200 pixels would make for a feature vector
of 80000 components). In order to reduce complexity and
dimensionality, and in an attempt to extract important char-
acteristics of the signatures, the images of the signatures are
first processed before being fed to the SVM algorithm. In our
case, we decided to implement the method of Justino et al. [1],
since it was simple and according to the authors gave good
results.

For this procedure, the image is first segmented into what
are called cells (Fig. 2), of about 16×25 pixels for signatures
scanned at 300 DPI and of about 4 × 6 pixels for 75 DPI.
Within each cell, four features are computed (Fig. 3): the pixel
density, the gravity center distance, the segment curvature, and
the predominant slant or orientation.

Fig. 2. Feature vector representation for signatures (from [1]).

mailto:saudet@cim.mcgill.ca
mailto:peyush.bansal@mail.mcgill.ca
mailto:shirish.baskaran@mail.mcgill.ca

ECSE 526 - ARTIFICIAL INTELLIGENCE, FINAL PROJECT, APRIL 7, 2006 (REVISED MAY 7, 2006) 2

Fig. 3. The feature extraction method (from [1]): (a) segmented cell; (b)
pixels density; (c) gravity center distance; (d) segment curvature and (e)
predominant slant definition.

The first two features are easy to compute and account for
static graphometric features. The pixel density computes the
ratio of the number of “black” pixels to the total number of
pixels in a cell. The gravity center distance is the distance from
the center of gravity (first moment or average position) of all
the “black” pixels to one of the corners of the cell. The two last
features are a bit more involved and account for semi-dynamic
graphometric features (which change with the way a signature
is written). The image is first converted into a skeleton image.
The application of a thinning procedure [2] is the easiest
method of obtaining a skeleton of relatively good quality. The
segment curvature is computed by walking around a “black”
pixel, and by matching pairs of “black” pixels in the skeleton
image. The curvature of a 3×3 pixel neighborhood can be seen
as counting the number of steps required to reach one pixel
from another pixel by walking around the center pixel. The
number of absolute steps required to walk from the deviation
of a straight line is the curvature measure we are interested in,
such that three aligned pixels would give a curvature measure
of 0, and anything else would be greater than 0, but smaller
than 8. The average for all pixels in a given cell gives the
segment curvature. The predominant slant is a measure of the
orientation of the segment in the skeleton image. Each pattern
in Fig. 3 (e) is matched for each “black” pixel, and the average
over all pixels represents the predominant slant feature for the
cell. For empty cells, all features are set to 0.

These features for all cells are concatenated together giving
for this signature a feature vector (Fig. 2) which is then directly
fed to the SVM algorithm. The dimensionality of such a
feature vector is usually of about 3000, but it is always quite
sparse.

For Virtual SVM (VSVM), the support vectors found during
the course of the training of an SVM classifier are sent
back to the image processing module to undergo invariant
transformation before retraining [3]. Since support vectors are

Fig. 4. A sample linear SVM classifier and its margin (from [5]).

the difficult examples to classify, it makes sense to concentrate
further computational effort on those examples alone. After
some informal testing regarding the performance on a few
signatures, it was decided to settle on the following: 3 rotations
of -5, 0 and 5 degrees; and 3 translations of a quarter of a cell
width in the direction of both axes. This procedure generates
3×3×3−1 = 26 virtual examples per signature or forgery. The
SVM classifier is then retrained on those new virtual examples,
in the hope of producing a more robust classifier.

III. SUPPORT VECTOR MACHINES

To perform signature classification we decided to use the
technique of Support Vector Machines since it can handle
data sets with large number of attributes and has a better
generalization performance [4] than other methods.

Unlike Neural Networks for which the number of sigmoid
units that define the structure is fixed before training and
for which the network weights are determined by training
for minimum mean-squared error between actual and desired
outputs (empirical risk minimization), SVM classifiers can
learn the optimal structure by optimizing their parameters for
minimum classification error (structural risk minimization).
Empirical risk minimization relies on the availability of large
amounts of training data [4]. Hence, SVM classifier are even
more appropriate in our case since the amount of training data
available for signatures is usually limited.

The principle behind SVM relies on a linearly separable
feature space (Fig. 4). The objective is to find the optimal
hyperplane that is uniquely determined by a set of the vectors
(or data points) at equal distance from the hyperplane – the
support vectors.

The support vectors are selected from the training data so
that the distance between the two hyperplanes passing through
the support vectors (x+ and x−) is at a maximum. The optimal
hyperplane maximizes the empty space (or margin) between
all training data points.

For the linearly separable case there will not be any training
data between the two hyperplanes and the decision plane,
which is midway between the two hyperplanes. Moreover, this
optimal decision plane should minimize classification error.
This has been proved by Vapnik [6].

ECSE 526 - ARTIFICIAL INTELLIGENCE, FINAL PROJECT, APRIL 7, 2006 (REVISED MAY 7, 2006) 3

Fig. 5. A sample linear SVM classifier with a soft margin (from [5]).

From Fig 4, the decision hyperplane can be expressed as
follows:

x · w + b = 0. (1)

All the n training data must satisfy the following constraint:

yi(xi · wi + b) ≥ 1 for i = 1, ..., n. (2)

The SVM approach aims at maximizing the margin of
separation which can be calculated as follows (Fig 4):

M =
w · (x+ − x−)

‖w‖
=

2
‖w‖

. (3)

For cases where the training data points are not clearly
separable the margin can be relaxed to facilitate a more robust
decision (Fig. 5).

In this case, the constraint is posed as follows:

yi(xi · wi + b) ≥ 1− εi for i = 1, ..., n (4)

where εi are slack variables which measure the deviation of
data points from the marginal hyperplane and allow some data
points to violate the initial constraint. Therefore, the objective
is to minimize:
1
2
‖w‖2 + C

∑
i

εi subject to yi(xi ·wi + b) ≥ 1− εi (5)

where C is a parameter used to penalize violations of the
margin. The value of C is defined constant or chosen by
validation.

A typical and good approach to solving the above quadratic
minimization problem is by introducing Lagrange multipliers
α ≥ 0 and reformulating the optimization equation as a
Lagrangian:

max
α

n∑
i=1

αi −
1
2

n∑
i=1

αi

n∑
j=1

αiαjyiyj(xi · xj) (6)

subject to the following constraints:
n∑

i=1

αiyi = 0 where 0 ≤ αi ≤ C. (7)

This formulation helps is two ways. First, the constraints
on Lagrange multipliers are much simpler to handle. Secondly,

Fig. 6. Mapping of data to a higher dimensional feature space.

the training data now only appears in the form of dot products
of vectors [4].

For the cases where the data is not linearly separable, the
fact that it only appears in the form of dot products makes
the mapping of the data x from the input space to a higher
dimensional feature space (Fig. 6) much less complex.

This gives rise to the concept of “kernel tricks”. A kernel
is defined as follows:

K(x, x′) = φ(x) · φ(x′), (8)

where φ(x) is a function mapping x to a higher dimensional
space. However, this function does not need to be known to
evaluate K(x, x′). The SVM algorithm only uses K and does
not need to know what individual φ represent. It is for this
reason that SVM can handle large dimensional feature vectors
without significant effect on performance [4].

A. Sequential Minimal Optimization

Moving into the implementation aspects of SVM, we
decided to implement the Sequential Minimal Optimization
(SMO) algorithm as outlined by Platt [7] since it is known to
be a fast and simple method of realizing SVM classification.
The Lagrangian of equation 6 form a quadratic programming
(QP) problem that the SMO algorithm can solve. The con-
straints on the Lagrangian are known as the Karush-Kuhn-
Tucker (KKT) conditions within the context of this constrained
optimization. A solution is optimal only when all the data
points satisfy the KKT conditions which can be reformulated
as:

• αi = 0 for linearly separated points (yif(xi) ≥ 1)
• 0 < αi < C for support vectors (yif(xi) = 1)
• αi = C for points violating the margin

(εi > 0 and yif(xi) < 1)
The SMO algorithm breaks the large QP problem into the

set of smallest possible QP problems, by selecting and opti-
mizing two Lagrange multipliers at a time while holding the
rest constant in order to satisfy the constraints of equation 7.

The advantage of SMO lies in the fact that the optimization
of the two selected Lagrange multipliers can be done analyti-
cally, thus computationally intensive numerical QP optimiza-
tion which would have required special QP libraries is avoided.
In addition, by avoiding large matrix computations and by
simultaneously optimizing only two Lagrange multipliers at
a time, we make the training procedure less susceptible to
numerical instabilities that can arise when working with large
matrices. Also of great importance, the memory required by
SMO is linearly proportional to the the size of the training set,
allowing the SVM classifier to handle very large amounts of
data.

ECSE 526 - ARTIFICIAL INTELLIGENCE, FINAL PROJECT, APRIL 7, 2006 (REVISED MAY 7, 2006) 4

The SMO algorithm can be broken down into three com-
ponents:

1) a heuristic for choosing which Lagrange multipliers to
optimize,

2) an analytical method to solve for the two selected
Lagrange multipliers, and

3) a method for computing b.
In order to convey the overall structure of the algorithm, a

brief summary of the first component is provided below. How-
ever, since the mathematical derivations are quite involved,
they are not detailed in this report. For the interested reader,
more information about SMO has been published by Platt [7].

The SMO algorithm is guaranteed to converge [7]. However,
in order to accelerate the convergence, heuristics are used
to detect which Lagrange multipliers should provide the best
improvement upon optimization. There are basically two areas
of the algorithm that can benefit from heuristics. One is found
within the outer loop where the first Lagrange multiplier is
picked, while the other is found within the inner loop where
the second multiplier is picked.

The processing done within the outer loop goes as follows.
First, an iteration over every element in the training set is
performed. If an example is found to violate the KKT condi-
tions then it is immediately selected for optimization, and the
program enters the inner loop. After the outer loop completes
an entire sweep over all examples, the next sweep proceeds
only with those examples in the training set which have non-
bounded Lagrange multipliers (0 ≤ αi ≤ C). Again each
example is checked against the KKT conditions and violating
examples are eligible for optimization. The program loops
repeatedly over all non-bound examples until they all obey
the KKT conditions within a certain pre-defined tolerance.
When this goal is achieved, the outer loop once again sweeps
over the entire training set, and this process is repeated until a
sweep through the entire training set yields no examples that
violates the KKT conditions (within tolerances), upon which
the algorithm terminates.

Within the inner loop, the second SMO heuristic chooses
which example to select as the second Lagrange multiplier
to optimize. This is done by selecting the example which
gives the largest step during the optimization, or in other
words the example that maximizes |E1 − E2|. However, the
process of calculating the step is a time consuming process
involving kernel function evaluations. Thus an improvement
was suggested by Platt [7] whereby the error values (E1, E2)
are stored in an error cache and read back when necessary.
The algorithm also includes a secondary method of selection,
in the event that the maximum step heuristic is unable to
make positive progress, leading to a selection that brings
no optimization. This method involves first iterating through
all the non-bound examples until one is found that leads to
positive progress. If this method also fails, then an iteration is
performed over all examples in search of suitable data. If this
heuristic fails as well, then the example selected by the outer
loop is skipped and another example is selected. It should be
noted that the starting point of both iterations is randomized.
This is to done in order to avoid biasing the classifier toward
to the training examples at the beginning of the set.

In an effort to further improve the performance of the SMO
algorithm, we added a kernel cache as well. The caching
mechanism keeps in memory the results of kernel computa-
tions which are later retrieved as needed. This optimization
has a notable positive impact on performance, although no
empirical measurements were made.

Once the SMO has completed, the values of all the Lagrange
multipliers (αi) are known, and the decision boundary for
classification can be determined as follows:

f(x) =
n∑

i=1

yiαiK(x, xi) + b = 0. (9)

In the linear case, K(x, xi) = (x · xi) and the weights
needed for classification and to find the margin can be deter-
mined as follows:

w =
n∑

i=1

yiαiyixi. (10)

B. Implementation

For the signature verification system, we implemented linear
and non-linear SVM classifiers with soft margins using the
SMO algorithm.

For the non-linear case we implemented a Radial Basis
Function (RBF) and used it as a kernel function. This function
is well known to constitute a valid kernel whose output
represents the result of a dot product in an otherwise unknown
infinite dimensional space. In fact, it is simply a Gaussian
function that behaves like a similarity function. In the RBF
kernel equation below one can see that the exponential func-
tion is at its maximum of 1.0 only if the two points are the
same:

K(xi, xj) = exp
(
−|xi − xj |2

σ2

)
= exp(−γ|xi − xj |2).

(11)
It was proven as well that the linear kernel with parameter C

is in fact just a special case of the RBF kernel for given values
of C and γ. The reason we only used the RBF kernel as non-
linear kernel is because the number of parameters required
by the RBF kernel (C, γ), which influences the complexity
of model selection during validation, are less than the other
choices of non-linear kernels.

Finally, for numerical stability within the SMO algorithm,
we normalized all components of the feature vector so that
their values are between 0.0 and 1.0.

We compared the results obtained from our SMO implemen-
tation of SVM with SVMlight, a free software implementation
of SVM. We compared the results for both the linear and
the RBF kernels and they were identical. This confirmed that
our SMO implementation of the SVM algorithm was working
correctly and that it could be used for the signature verification
task.

IV. TESTING

A. Testing Procedure

We devised a testing scheme as detailed by the flow chart
of Fig. 7 in order to train optimal classifiers and test their

ECSE 526 - ARTIFICIAL INTELLIGENCE, FINAL PROJECT, APRIL 7, 2006 (REVISED MAY 7, 2006) 5

Next C
and gamma?

Train with n genuine signatures
and 600 random forgeries.

Output C, gamma, SSE,
error rate, margin, and # SV.

Output optimal C and gamma
w.r.t. SSE, error rate, margin

 and # of SV.

Train with optimal C
and gamma.

Retrain with virtual samples.

Test on skilled forgeries and
remaining genuine signatures.

Output testing SSE, TP, TN, FP and FN.

Output validation SSE,
error rate, margin, and # SV.

Test on skilled forgeries and
remaining genuine signatures.

Output testing SSE, TP, TN, FP and FN.

Start Validation

Start Testing

Start Testing

Next n
(12 to 16)?

Start Validation

Process One Person

End Processing

End Testing

End Validation

Fig. 7. Flowchart of the full testing procedure for one person.

ECSE 526 - ARTIFICIAL INTELLIGENCE, FINAL PROJECT, APRIL 7, 2006 (REVISED MAY 7, 2006) 6

performances. Summarily, for each person, the program trains
the classifier with a varying number (from 12 to 16) of genuine
signatures and with a high number (600) of randomly chosen
signatures from the rest of the database. As validation, a leave-
one-out cross-validation is performed over a range of values
for the parameter C in the case of the linear kernel, and for
the parameters C and γ, in the case of the RBF kernel. We
decided not to use the polynomial kernel since it would require
validation of 4 parameters versus only 2 for the RBF. It is
probable as well that an RBF kernel with given C and γ
is equivalent to a polynomial kernel with given parameters,
although no proof of this exists. Also, it has been observed
that RBF kernels generally outperform polynomial kernels [8].

Once the optimal kernel and its optimal parameters are
known, the program trains the classifier with the full set
of examples, with and without VSVM. The test results of
both classifiers trained and validated using the same genuine
signatures and random forgeries are compared.

Note that in the field of signature verification, it is standard
to train only with random forgeries and not with skilled
forgeries. This is because skilled forgeries are generally hard to
obtain, and any practical system built to verify signatures will
need to properly classify out skilled forgeries without access
to any skilled forgeries during the training phase.

B. Test Results
The testing procedure described in the previous section is

quite involved. In order to capture the highest number of
differences between a given person’s signatures and everyone
else’s signatures, it is desirable to train the classifier using
a lot of random forgeries (between 200 and 600). Training
a classifier on that many examples with a feature vector of
about 3000 dimensions is quite computationally demanding,
especially in the case of the RBF kernel. The performance of
our SMO implementation of was not good enough to proceed
through the validation phase in order to find the optimal kernel
and its optimal parameters (only C for the linear kernel, and
C and γ for the RBF kernel). Therefore, we decided to present
here complete test results using a linear kernel with fixed
parameter C = 1024 as suggested by Justino et al. [1]. The
results are shown in Figures 8, 9, and 10, where the error bars
indicate the standard deviations and the red dots, the minima
and maxima. The 75 DPI database used as input data was taken
from work done by Ferrer et al. [9]. This database contains
160 people, 24 genuine signatures and 30 skilled forgeries per
person, which were all used for our tests. For the training of
a given person, 600 randomly chosen signatures from the rest
of the database were used as random forgeries.

The statistics that best describe our results are: the mini-
mum, maximum and average error rate (ER), false rejection
rate (FRR or error type I), and false acceptance rate (FAR or
error type II) over all persons:

ER =
FP + FN

TP + TN + FP + FN

FRR =
FN

FN + TP

FAR =
FP

FP + TN

where TP , TN , FP , and FN are the number of true
positives, true negatives, false positives and false negatives
respectively.

The abscissa indicates the number of genuine signatures
used for training, between 12 and 16. This range was chosen
since the database contains only 24 genuine signatures per
person. Anything lower than 12 would most likely, statistically,
not produce a low FRR. Also we wanted to keep at least 8
signatures for testing. As can be seen on Fig. 8 the average
error rate is of about 14% for all cases, but the extrema
go from 0% and to almost 50%. Anything higher than 50%
would indicate a serious problem with our algorithm since it
would indicate that our classifiers were worse than a classifier
randomly choosing the validity of a signature. From Fig. 9,
the false rejection rate is of around 25% and slightly decreases
with the number of genuine signatures used during training, as
expected. Again, this statistic has a wide range of values, from
0% to 100%, indicating that for some very rare signatures, our
classifier could not recall at all signatures from the person for
which it was trained. Next, the false acceptance rate of Fig. 10
is of about 11% and slightly increases with the number of
genuine signatures used for training, also as expected, since
using more signatures for training can only either leave the
decision plane unchanged or push it toward the forgery area of
the space. The variability of this rate ranges from 0% to about
63%, indicating that such a system could not be trusted without
human supervision for managing access to critical data.

For the second part of the testing procedure, the classifier
was retrained with virtual signatures generated as described
in the image processing section, and its performance was
evaluated. As one can see from the results in figures 11, 12
and 13, the error rate slighly increases by 3%, the FRR of
the virtually trained SVM classifiers is better (17%) than the
one trained without (25%), but the FAR is higher (18% versus
11%).

However, these results were obtained with a linear kernel.
At the time of this writing, the performance of our SMO
implementation was not good enough to run a full parameter
grid search [8] and validate the parameters C and γ of the RBF
kernel. However, in the future, with a better optimized SVM
implementation such as SVMlight, we plan on finding optimal
RBF classifiers using the leave-one-out cross-validation proce-
dure for each person, as described in the previous section, and
compare the results with and without virtual examples. Also,
invariant transformations other than rotation and translation,
and better suited to signature verification might exist and
should be investigated.

Although we did not use validation on the classifiers
obtained and used for the tests above, we still wanted to
show some validation results. So we used leave-one-out cross-
validation with 16 genuine signatures and 200 random forg-
eries on the first 10 people in the database, and tested on the
remaining 8 genuine signatures and the 30 skilled forgeries.
We pitted against each other a linear kernel with a fixed
C = 1024 and a linear kernel with a C chosen for each
person on the basis of best error rate and sum of square errors
(SSE), in that order. The results are given in Table I, and as
one can see, the results obtained with validation are slightly

ECSE 526 - ARTIFICIAL INTELLIGENCE, FINAL PROJECT, APRIL 7, 2006 (REVISED MAY 7, 2006) 7

12 13 14 15 16
0

10

20

30

40

50

60

70

80

90

100
Min/Max/Mean Error Rate (Sans VSVM)

Number of genuine signatures used for training

R
at

e
(P

er
ce

nt
)

Fig. 8. Plot of min/max/mean error rate without VSVM.

12 13 14 15 16
0

10

20

30

40

50

60

70

80

90

100
Min/Max/Mean False Rejection Rate (Error Type I) (Sans VSVM)

Number of genuine signatures used for training

R
at

e
(P

er
ce

nt
)

Fig. 9. Plot of min/max/mean false rejection rate (error type I) without
VSVM.

12 13 14 15 16
0

10

20

30

40

50

60

70

80

90

100
Min/Max/Mean False Acceptance Rate (Error Type II) (Sans VSVM)

Number of genuine signatures used for training

R
at

e
(P

er
ce

nt
)

Fig. 10. Plot of min/max/mean false acceptance rate (error type II) without
VSVM.

12 13 14 15 16
0

10

20

30

40

50

60

70

80

90

100
Min/Max/Mean Error Rate (VSVM)

Number of genuine signatures used for training

R
at

e
(P

er
ce

nt
)

Fig. 11. Plot of min/max/mean error rate with VSVM.

12 13 14 15 16
0

10

20

30

40

50

60

70

80

90

100
Min/Max/Mean False Rejection Rate (Error Type I) (VSVM)

Number of genuine signatures used for training

R
at

e
(P

er
ce

nt
)

Fig. 12. Plot of min/max/mean false rejection rate (error type I) with VSVM.

12 13 14 15 16
0

10

20

30

40

50

60

70

80

90

100
Min/Max/Mean False Acceptance Rate (Error Type II) (VSVM)

Number of genuine signatures used for training

R
at

e
(P

er
ce

nt
)

Fig. 13. Plot of min/max/mean false acceptance rate (error type II) with
VSVM.

ECSE 526 - ARTIFICIAL INTELLIGENCE, FINAL PROJECT, APRIL 7, 2006 (REVISED MAY 7, 2006) 8

TABLE I
AVERAGE TEST RESULTS FOR 10 PERSONS USING A LINEAR KERNEL

WITH 16 GENUINE SIGNATURES AND 200 RANDOM FORGERIES FOR

TRAINING.

Fixed Parameter Per Person
C = 1024 Validated C

Margin Width 2.99 3.04
SSE 19.1 17.3

Error Rate 15.3% 15.0%
FAR 15% 16%
FRR 15% 13%

Min False Rejection -0.20 -0.13
Max False Acceptance 0.41 0.37

better overall. We would probably get even better results using
an RBF kernel, but in order to get any meaningful results,
we would need to perform a grid search on both C and γ
parameters. Our current implementation is not fast enough
for this purpose. Note also that with the knowledge of the
maximum distance from the decision plane to the misclassified
forgeries (for example 0.41 for C = 1024), a threshold value
can be devised in order to minimize the false acceptance rate at
the expense of the false rejection rate or vice versa if desired.

V. CONCLUSION

As can be seen from the results, we were able to extract
decent performance from our signature verification system
using SVM classifiers. The average error rate on the database
used was of about 14%, although the extrema vary from
about 0% to almost 50%. Also the false acceptance rate, the
most serious error of biometric errors, is lower (∼11%) than
the false rejection rate (∼25%) indicating that the system
automatically seems to “understand” the fact that the first type
of error is of greater importance, although VSVM does not
seem to carry over this characteristic as it seems to favor the
reduction of the FRR at the expense of the FAR.

As future work, the testing procedure as well as the SVM
algorithm need to be refined and improved in order to properly
validate the choice of kernel and the values of its parameters.
Also, since Virtual SVM showed promising results, it would
be of great research interest to study the effect of virtual
signatures on signature verification in greater details, since we
believe this idea has great potential. Among others, different
invariant transformations should be studied and the RBF kernel
should be used.

ACKNOWLEDGMENT

The authors would like to thank Yon Visell for his help
understanding SVM and for all the material learned in class.

REFERENCES

[1] E. J. R. Justino, F. Bortolozzi, and R. Sabourin, “A comparison of svm
and hmm classifiers in the off-line signature verification,” Pattern Recogn.
Lett., vol. 26, no. 9, pp. 1377–1385, 2005.

[2] R. Fisher, S. Perkins, A. Walker, and E. Wolfart, “Hypermedia Image
Processing Reference (HIPR2),” 2004, http://homepages.inf.ed.ac.uk/rbf/
HIPR2/.

[3] B. Schölkopf, C. Burges, and V. Vapnik, “Incorporating Invariances in
Support Vector Learning Machines,” in ICANN 96: Proceedings of the
1996 International Conference on Artificial Neural Networks, vol. 1112.
London, UK: Springer-Verlag, 1996, pp. 47–52.

[4] C. J. C. Burges, “A Tutorial on Support Vector Machines for Pattern
Recognition,” Data Min. Knowl. Discov., vol. 2, no. 2, pp. 121–167, 1998.

[5] A. W. Moore, “Support Vector Machines, Tutorial Slides,” 2001, http:
//www.autonlab.org/tutorials/svm.html.

[6] V. Vapnik, Estimation of Dependences Based on Empirical Data. New
York, USA: Springer Verlag, 1982.

[7] J. C. Platt, “Sequential Minimal Optimization: A Fast Algorithm for
Training Support Vector Machines,” Microsoft Research, Tech. Rep.
MSR-TR-98-14, 1998.

[8] C.-W. Hsu, C.-C. Chang, and C.-J. Lin, “A Practical Guide to Support
Vector Classification,” Department of Computer Science and Information
Technology, National Taiwan University, Tech. Rep., 2003. [Online].
Available: http://www.csie.ntu.edu.tw/∼cjlin/papers/guide/guide.pdf

[9] M. A. Ferrer, J. B. Alonso, and C. M. Travieso, “Offline Geometric
Parameters for Automatic Signature Verification Using Fixed-Point Arith-
metic,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 6, pp. 993–
997, 2005.

http://homepages.inf.ed.ac.uk/rbf/HIPR2/
http://homepages.inf.ed.ac.uk/rbf/HIPR2/
http://www.autonlab.org/tutorials/svm.html
http://www.autonlab.org/tutorials/svm.html
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

	Introduction
	Signature Image Processing
	Support Vector Machines
	Sequential Minimal Optimization
	Implementation

	Testing
	Testing Procedure
	Test Results

	Conclusion
	References

