
Direct Image Alignment of Projector-Camera Systems with Planar Surfaces

Samuel Audet, Masatoshi Okutomi, and Masayuki Tanaka
Tokyo Institute of Technology

2-12-1 Ookayama, Meguro-ku, Tokyo, Japan
saudet@ok.ctrl.titech.ac.jp, mxo@ctrl.titech.ac.jp, and mtanaka@ctrl.titech.ac.jp

Abstract

Projector-camera systems use computer vision to ana-
lyze their surroundings and display feedback directly onto
real world objects, as embodied by spatial augmented re-
ality. To be effective, the display must remain aligned even
when the target object moves, but the added illumination
causes problems for traditional algorithms. Current so-
lutions consider the displayed content as interference and
largely depend on channels orthogonal to visible light. They
cannot directly align projector images with real world sur-
faces, even though this may be the actual goal. We pro-
pose instead to model the light emitted by projectors and
reflected into cameras, and to consider the displayed con-
tent as additional information useful for direct alignment.
We implemented in software an algorithm that successfully
executes on planar surfaces of diffuse reflectance properties
at almost two frames per second with subpixel accuracy.
Although slow, our work proves the viability of the concept,
paving the way for future optimization and generalization.

1. Introduction

Traditional applications of augmented reality superim-
pose generated images onto the real world through gog-
gles or monitors held between objects of interest and the
user. The display must usually follow objects and devel-
opers often choose cameras to perform tracking, as com-
puter vision methods are flexible and nonintrusive. Since
the augmented objects remain in reality unchanged, we do
not need to change the image processing algorithms either.
One can directly apply existing computer vision techniques
for tracking or other purposes. However, with spatial aug-
mented reality [6], we instead use video projectors to dis-
play computer graphics or data onto surfaces, as exempli-
fied in Figure 1. In this case, the appearance of the objects
may be severely affected, requiring new methods.

Figure 1. Snapshot of our demo video showing the patterns of Fig-
ure 8, where the system has aligned the projector displayed pattern
with the printed one.

1.1. Previous Work

To avoid the difficulty, current methods either exploit in-
formation channels that do not overlap with the displayed
content or make assumptions that restrict their usefulness.
Some use fiducial markers, such as iLamps [16], or a special
tracking system not based on visible light, such as Dynamic
Shader Lamps [4], but users need to paste specially pre-
pared markers to objects they might want to interact with.
Others have designed imperceptible structured light, such as
used in the Office of the Future [17]. However, this not only
reduces the dynamic range of the projector, but requires a
synchronized projector-camera system running at frequen-
cies higher than 60 Hz to avoid flicker. More simply the Per-
ceptive Workbench [14] has adopted near-infrared cameras
and uses computer vision to track without interference from
the projector, but calibrating projectors and cameras whose
light spectra do not overlap can be problematic. Although
all the above options work, they cannot directly align dis-
played content with real world texture. They solely depend
on accurate geometric calibration between the sensors, the
projectors, and the real world objects. Also, the system
does not see the same thing as the user, possibly causing
confusion when the algorithm fails. In another direction,

Tele-Graffiti [20] features a paper tracking algorithm that
detects the orientation of a piece of paper or a clipboard in-
side images captured from a normal camera. The authors
designed the algorithm robustly enough to work in the one
limited case where the edges of the rectangular object differ
markedly from the background, but they still consider the
displayed content from the projector as unwanted interfer-
ence.

In a nutshell, the performance of markerless tracking
leaves to be desired. If spatial augmented reality is to be-
come the basis for a new paradigm of user interaction, we
need more general, robust, and easy-to-use methods.

1.2. The Direct Approach

Contrarily to existing approaches that treat the displayed
content as interference, we propose to harness its knowl-
edge as additional information that can help the system
align it with real world objects. More specifically, we de-
rived a direct image alignment algorithm that takes projec-
tor illumination into account using a generative model. It
models how the light coming out of the projector reflects
onto a real world object and comes back in the camera.
As a first step, we decided to make a few simplifying as-
sumptions. Most importantly, the object must be planar and
feature diffuse reflectance properties with no specular re-
flections. Still, thanks to the inherent robustness of direct
alignment methods, we found that the algorithm can cope
with large amounts of noise. To provide some results, we
implemented in software our method for planar surfaces.
At this time, the program runs only at about two frames per
second on commodity hardware, and this restricts the speed
at which a user can move the object, but it achieves subpixel
accuracy. Future research will revolve around optimization
and generalization.

In the following sections, we first explain in more details
the design, including the system model and its simplifying
assumptions, and then the alignment algorithm itself, which
minimizes a cost function that requires initialization when
presented with a new planar surface. To simplify the ex-
planations, we describe a system with only one camera and
one projector, yet it can easily be extended to any number
of them.

2. System Model

A projector-camera system can be treated as a stereo pair,
and multiple view geometry [11] still applies as is. How-
ever, unlike traditional stereo systems made from two or
more similar camera devices, color information does not
transfer as easily from a projector to a camera. We need a
more sophisticated color model. In this section, before ex-
plaining the geometric and color models, to simplify them,
we start by enumerating assumptions we found useful.

2.1. Simplifying Assumptions

We first assume that the projector and camera are
fixed together, like a typical stereo camera, implying that
the strong epipolar constraint applies. The system may
nonetheless move with respect to the scene or vice versa, the
problem remains unchanged. Secondly, the color responses
of both camera and projector must be linear with respect to
the light intensity. We consider this to be reasonable for two
reasons. On one hand, this is typically the case of CCD or
CMOS sensors. On the other hand, most devices today fol-
low the sRGB color space standard [12] that features a well
defined color response curve approximating a transfer func-
tion with a gamma of 2.2, from which the intensities can be
linearized. We expect any deviations to be engulfed in the
inaccuracies introduced by the unknown light sources and
reflectance properties of the surface material, which brings
us to the third assumption. The scene consists of a planar
object with a matte surface exhibiting uniform diffuse re-
flectance, where the radiance changes smoothly as the angle
and distance vary. In particular, specularities are not mod-
eled. Lastly, all light shining on the plane comes from point
sources at infinity, such that no local shadows or highlights
appear. Only global changes in illumination are observed,
which we refer to as ambient light.

2.2. Geometric Model

To model geometrically both camera and projector de-
vices, we use the familiar pinhole camera model [11]. Al-
though originally designed for cameras, it also applies to
projectors. It maps a 3D point x3 of the surface to

x2 = K3×3 (R3×3x3 + t3), (1)

a 2D point on the image plane of the device, where K, the
camera matrix, contains the internal projective parameters
or intrinsics, and where R and t, the external parameters or
extrinsics, model the orientation and position in 3D space
of the device. It follows that the projection onto the image
planes of a camera placed at the origin and of a calibrated
projector can be respectively written

xc = Kc (I x3 + 0), (2)
xp = Kp (Rpx3 + tp). (3)

To avoid confusion, we refer to the matrix K as the cam-
era matrix even in the case of a projector. Further, even
though equations dealing with homogeneous coordinates
are only equal up to an arbitrary scaling factor, we use the
equal sign for convenience and clarity.

2.3. Color Model

While the geometric model of a device stands indepen-
dently on its own, for the color model, we decided instead

Surface plane

Camera image

Projector image

PP

P

Computer

w

n

ws

p

Ambient light

p c

pp

ps

?=
1

2

3

4
a

Surface reflectance

y
x

z

x3

Figure 2. Sketch of the image formation model.

for simplicity to model only the relationship between de-
vices. Other methods [8, 9, 10, 13, 19] require either con-
trol over the shutter speed of the camera, more than one
projector, or an elaborate 3D contraption, but we wanted a
model that we could calibrate without camera control and
with only one projector and a planar surface, as follows.

If a projector pixel shines the color pp on a surface point
of reflectance ps, we expect the corresponding camera pixel
to observe the color

pc = ps × [gX3×3pp + a] + b, (4)

where g is the gain of the projector light, which we assume
varies smoothly and uniformly with the distance and angle
to the surface; X is the color mixing matrix as defined by
Chen et al. [9], also called the “projector-camera coupling
matrix” by Caspi et al. [8]; a, the ambient light; and b, the
noise bias of the camera. All vectors are three-vectors in the
RGB color space, and their multiplication is done element-
wise. We derived the model directly from the bidirectional
reflectance distribution function (BRDF) of a flat matte sur-
face, which Johnson and Fuchs [13] have shown to be valid
in the case of projector-camera systems. Although the equa-
tion explicitly models the relation between only one camera
and one projector, as long as one identifies the reference
device, the model can adapt to any number of them.

2.4. Calibration

Before we may use them, these models require a number
of parameters to be known, which we can find via calibra-
tion. We proceed in a manner similar to current methods for
both geometric parameters (Kc, Kp, Rp, and tp) [1, 23] and
color parameters (X and b) [8, 9], but we assume linearized
color responses from the start.

2.5. Image Formation Model

Using the geometric and color models, we can simu-
late how an image forms on the sensor of the camera. The

explanation that follows is also summarized in Figure 2. As-
suming the geometric parameters n of the plane are known
and given a 3D point x3 on the surface plane such that
nTx3 + 1 = 0, it follows that the 2D point xp from Equa-
tion 3 can also be expressed as

xp = Kp (Rpx3 + tp)
= Kp (Rpx3 − tpnTx3) since nTx3 = −1
= Kp (Rp − tpnT) x3 (5)
= Kp (Rp − tpnT) K−1

c xc

= Hpc xc,

where the before last substitution comes from the fact that
homogeneous vector xc from Equation 2 can be arbitrarily
scaled to fit in. This shows that a camera pixel xc is trans-
formed by a homography Hpc into the projector pixel xp.
From this we define the warping function from the camera
image plane to the one of the projector:

wp(xc) ≡ Hpc xc. (6)

This corresponds to step 1 in Figure 2.
Similarly, one can map a camera image point xc onto a

point xs of the image of the surface plane, assumed to have
been initialized at a prior moment using the same camera.
The camera motion Rs, ts required to return to the prior ori-
entation and position can be seen as a second camera (one
can think of it as the “surface camera”) with the same set of
internal parameters, but with different external parameters,
as follows:

xs = Kc (Rsx3 + ts)
= Kc (Rsx3 − tsnTx3) since nTx3 = −1
= Kc (Rs − tsnT) x3 (7)
= Kc (Rs − tsnT) K−1

c xc

= Hsc xc,

which again becomes a homography Hsc that this time maps
current camera points xc to surface points xs, from which
we define another warping function:

ws(xc) ≡ Hsc xc. (8)

This corresponds to step 2 in Figure 2.
Finally, plugging these coordinates into the color model

of Equation 4 by considering the pixel colors pc, ps, and
pp as functions over the images, we expect the pixel color
at point xc of the camera to be

pc(xc) = ps(ws(xc))× [gXpp(wp(xc)) + a] + b. (9)

This corresponds to the final third and fourth steps in
Figure 2.

3. Alignment Algorithm
Based on the mentioned simplifying assumptions, the

models illustrated above, and the parameters obtainable via
calibration, we designed an iterative method to directly
align images of projector-camera systems. In this section,
we explain the cost function and the algorithm to minimize
it, which can hopefully converge to the correct alignment
under normal circumstances. Following this, we provide
details as to how one may initialize the algorithm for a new
surface plane. However, we first assume that the parame-
ters n and reflectance ps of the surface plane found during
initialization are known.

3.1. Cost Function

To align best the images, we want to find an optimal set
of parameters. Intuitively, these parameters should mini-
mally model the relative motion between the surface plane
and the projector-camera system, since all other parame-
ters are determined either during calibration or initializa-
tion. Looking back at Equations 6 and 8, these unknown
parameters relating to motion are Rs and ts, a typical ego-
motion problem, which represents six degrees of freedom.
Four others come from the gain g and the ambient light a,
which we assumed may change during motion, for a total of
ten degrees of freedom and consequently ten parameters to
optimize. We can thus formulate our goal into a cost func-
tion to minimize, which basically consists of the norm of
the residual between the observed camera image p̄c and the
expected image as defined by Equation 9, i.e.:

min
Rs,ts,g,a

∑
xc

||p̄c(xc)− ps(ws(xc; Rs, ts))×

[gXpp(wp(xc; Rs, ts)) + a]− b||2,
(10)

adding up to the maximum likelihood estimate (MLE) un-
der the assumption of Gaussian noise. We chose the
two-norm to simplify the implementation of the traditional

Gauss-Newton optimization algorithm favored for image
alignment problems [3], but more robust norms could also
be used.

3.2. Minimization

To minimize the cost function of Equation 10, while
one could optimize the 3D motion parameters directly, be-
cause of the inherent ambiguity between 3D rotation and
translation, the convergence properties lack robustness [2].
From our own experiments, we also came to the same con-
clusion. For this reason, we instead decided to optimize
the 2D homography Hsc of Equation 8 using a four-point
parametrization [2], which does not exhibit this problem
and from which we can easily extract the desired motion
Rs and ts [21]. This however raises the number of param-
eters from six to eight, while the actual 3D motion remains
at six degrees of freedom. To gain more robustness, we im-
plemented constrained Gauss-Newton optimization using a
Lagrange multiplier [15] to limit results to physically pos-
sible transformations. More precisely, we based the con-
straint on the Frobenius norm

|| Hsc −Kc (Rs − tsnT) K−1
c ||F = 0. (11)

While we have not done extensive testing and can only hy-
pothesize about its effect on the convergence properties, we
noted that on average it shaved about 10% off the number
of iterations required to converge.

For simplicity and contrarily to Lucas and Kanade [3],
we decided to evaluate the Jacobians numerically. This
avoids the need to precompute image gradients and to ana-
lytically derive the cost function. Computationally, it does
not appear to be less efficient. While the more usual al-
gorithm would warp per iteration only four images instead
of sixteen (two homographies), it would require twice the
number of image multiplications to evaluate the derivatives
and twice the amount of (cache) memory to hold image gra-
dients. Nevertheless, we plan to investigate this in the fu-
ture.

For additional robustness and performance, we imple-
mented the traditional coarse-to-fine multiresolution esti-
mation, where each level higher in the resolution pyramid
is first smoothed with a 5 × 5 Gaussian filter and then sub-
sampled by a factor of two. We found that five levels gave
best results. For an initial image of 1024 × 768 pixels, this
means low resolution images down to 64× 48 pixels.

3.3. Initialization

The above minimization algorithm works only if the sur-
face plane parameters n are known. The reflectance map ps
also needs to be acquired somehow. Equation 4 shows that
solving for the two unknowns ps and a requires capturing
at least two images from the camera. Although there are un-
doubtedly many possible ways to perform initialization, we

designed an approach that can cope with small movements,
allowing users to hold the surface plane in their hands. This
approach works in three phases, by first estimating the am-
bient light a, then the reflectance map ps, and finally the
geometric plane parameters n.

Concretely, the procedure goes as follows. It starts by
the projection and the capture as fast as possible of three
consecutive shots, to obtain images with the smallest inter-
frame motion possible, from which the user may select a
region of interest. For the first image, the system sets the
projector color pp to zero, and for the second, to maximum
intensity pmax

p . (More details about the third image below.)
Taking the first two images, it can then estimate the ambient
light by defining the reference gain g = 1 and isolating a
from Equation 4:

a = Xpmax
p

p1
c − b

p2
c − p1

c
, (12)

where p1
c is the color from the first image, and p2

c , from
the second image. To reduce the undesirable effect of mo-
tion, we use at this phase severely smoothed versions of the
first two images, for example by convolving with a 51× 51
Gaussian kernel, which is reasonable since we assumed that
ambient light varies only globally. This assumption also al-
lows the system to ignore points where p2

c −p1
c is too close

to zero and to evaluate only the average.
The second phase consists of using the second image,

this time the original crisp version, along with the estimated
ambient light to recover a crisp reflectance map

ps = p2
c − b

Xpmax
p + a

. (13)

For the third phase, the idea is to actually run the min-
imization algorithm described in the previous subsection,
optimizing not only for g, Hsc and a, but also for n. As
initial values, one can reasonably set g to 1, Hsc to I (the
origin), reuse the ambient light computed in the first phase,
and decide upon application-dependent plane parameters,
for example frontoparallel at a distance of one meter. For
the algorithm to converge properly though, some sort of tex-
ture needs to be displayed on the surface plane. We chose a
fractal image, as shown in Figure 3, orthogonally aligned to
the epipolar lines. Because this texture contains the same
pattern at all scales, running the minimization algorithm
at multiple resolutions should allow for easy and accurate
convergence over a wide range of displacements. More for-
mally, assuming epipolar lines aligned with the x-axis, the
intensities assigned to the projector image for coordinates
x ∈ [x1, x2] equal

pp(x, y) =

{
f(x, x1, xm, 0, 0, 1) if x1 ≤ x < xm
f(x, xm, x2, 0, 0,−1) if xm ≤ x ≤ x2

,

(14)

Figure 3. Fractal image displayed at the third phase of the initial-
ization.

whose amplitude is scaled appropriately, and where

f(x, x1, x2, y1, y2, n) =
f(x, x1, xm, y1, ym, n

′) if x1 ≤ x < xm
ym if x = xm
f(x, xm, x2, ym, y2,−n′) if xm < x ≤ x2

, (15)

xm = x1 + x2

2
, ym = y1 + y2

2
+ n, n′ = n√

2
. (16)

Although the barlike effect may give the impression of an
image used for structured light, the approach is totally dif-
ferent as our pattern contains no code and tolerates well any
surface texture.

Finally, because of user motion the resulting plane pa-
rameters n might be slightly off from the values in the sec-
ond image, from which the system actually derives the re-
flectance map ps. We need to transform it using the inverse
of Rs and ts to recover n0 of the second image. During
alignment in subsequent frames, n = Rsn0

1−tT
s n0

.

4. Results
The description of our method is now complete, and we

present here some results. We programmed an application
in Java, which integrates OpenCV and libdc1394 as appro-
priate, and that implements the procedures and algorithms
introduced in this paper. Our test hardware consisted of a
Casio XJ-S68 (1024×768 color DLP) projector, and a PGR
Flea2 FL2G-13S2C-C (1280×960 Bayer color CCD) cam-
era attached to a Pentax H1212B (12 mm) lens, both con-
nected to a Dell Vostro 400 computer with an Intel Core 2
Quad Q6600 2.4 GHz CPU. As surface plane, we inkjet
printed patterns on A4 size sheets of paper and pasted them
on (mostly) flat foam boards. We conducted two sets of ex-
periments, one to measure accuracy quantitatively by com-
paring alignment results with easy to detect markers and the
other to demonstrate real-time operation and support for ar-
bitrary textures.

As representative of the current methods, we chose
ARToolKitPlus [22], plus OpenCV [7] for subpixel estima-
tion, and compared its results with ours. We put the tex-
ture of Figure 5 on the planar surface. This fractal pattern

(a) frame 10 (b) frame 50 (c) frame 110 (d) frame 150 (e) frame 180

(f) frame 210 (g) frame 240 (h) frame 270 (i) frame 300 (j) frame 340

Figure 4. Frames from the markers test video with offline drawn red crosses representing detected markers and green rectangles denoting the
corresponding regions aligned by our program. The rectangle corners match the crosses with subpixel accuracy as shown in the blowups.

is the 2D equivalent of Equation 14, but where triangles
split the space at each recursion. Obviously, we also used
Figure 3 for the projector pattern in an attempt to extract
the best accuracy. On the resulting initialized reflectance
image, the markers delimited an initial region of interest
(ROI) of 197255 pixels. On each frame, we left our al-
gorithm run until ten iterations in a row did not lower the
error of Equation 10 by more than 10%, taking on average

Figure 5. The printed triangular fractal pattern along with four
markers that we used to obtain accuracy data.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 50 100 150 200 250 300 350 400

E
rr

or
 (p

ix
el

s)

Frame number

Marker 0
Marker 1
Marker 2
Marker 3

Figure 6. Difference in pixels between our results and the detected
centers of the markers.

a total of 2450 ms. Table 1 lists the time taken by each it-
eration at different levels of the resolution pyramid, where
the warping function alone took most of the time. From
this, Figure 6 shows the difference in pixels between our
results and the centers of the four markers over the whole
test video. Although markers do not provide the ground
truth either, we consider the difference as errors of our
algorithm since the error of corner estimation should be
less than 0.10 pixels [7]. The total root mean square er-
ror (RMSE) sums up to 0.33 pixels, which even includes
portions of motion blur (e.g., Figure 4(b)) and images vio-
lating the assumed single gain g, especially true of slanted
planes. We placed shots of the frames as captured by the
camera in Figure 4. The full sequence can be found in
the supplementary material as well as on our Web site:
http://www.ok.ctrl.titech.ac.jp/~saudet/markerstest_2009-11-14.mp4 .

To show that our program can also work almost in real
time even with poor and arbitrary textures that easily over-
lap on the surface, we ran it on the images shown in Fig-
ure 8, the first pasted on the surface plane and the sec-
ond displayed by the projector. More precisely, after each
frame, the system warped the projector pattern to achieve
a geometric correction on the physical plane by applying
the homography Hps = HpcH−1

sc , which transforms points
from the surface to the projector. (Although we could also

Table 1. Average time per iteration of the markers test.

Pyramid Camera Projector Average
Level Resolution Resolution Time (ms)

0 1280× 960 1024× 768 168
1 640× 480 512× 384 51
2 320× 240 256× 192 23
3 160× 120 128× 96 13
4 80× 60 64× 48 11

(a) frame 833 (b) frame 863 (c) frame 1057 (d) frame 1156 (e) frame 1523

(f) frame 1614 (g) frame 4142 (h) frame 4162 (i) frame 4596 (j) frame 4637

Figure 7. Frames from our demo video. We grouped them in pairs of a misaligned image caused by user motion followed by its correction.

correct the projector colors to match the printed one, we in-
tentionally left them as is to differentiate them.) Figure 1
shows the system in action. We placed more shots of the
demo video in Figure 7. The full sequence can be found
in the supplementary material as well as on our Web site:
http://www.ok.ctrl.titech.ac.jp/~saudet/procamtracker_2009-11-14.mp4 .
We limited to 300 ms the amount of time the program could
spend iterating, which in reality ran on average for 374 ms.
Camera capture via software trigger took a mean of 53 ms,
the projector display delay was about 66 ms, and updating
the projector and camera images took approximately 80 ms.
This gives a total of 573 ms on average for each frame, close
to two frames per second.

In both cases, the algorithm successfully converged
given any displacements reasonable for a direct alignment
method [3]. We also found that the single gain g used for
the entire image was sufficient when all points of the sur-
face plane are not far from each other relatively to their
distance from the projector, otherwise vignettinglike effects
obviously occur, a possibly impractical limitation for some
applications.

5. Discussion and Conclusion
From the results, we conclude that the computational

complexity is the main limitation of our approach. To

(a) Printed on the board. (b) Projector displayed.

Figure 8. The images used for our demo video.

accelerate it, we plan on investigating mathematical approx-
imations, algorithmic tricks, as well as hardware related op-
timizations. We have promising ideas on how to formulate
an approximate model that the inverse compositional (IC)
image alignment algorithm [3, 5] could work with. To im-
prove execution performance, we also tried to implement
the algorithm for graphics processing units (GPUs), but
sadly failed in our first attempt at making it faster than the
current CPU implementation. Fortunately, newer GPU ar-
chitectures, such as Intel Larrabee and NVIDIA Fermi, fea-
ture multiple instruction and multiple data stream (MIMD)
processing, which should allow parallel tasks to run faster
more easily.

The limited reflectance model presents another problem.
To work around it, once the algorithm has been sufficiently
accelerated, the surface may be divided in pieces each sup-
porting different gain and ambient light, as demonstrated by
Silveira and Malis [18] for camera-only systems. Such an
approach could even allow specularities.

Apart from these limitations, the algorithm can also be
enhanced to support more complex 3D surfaces, for exam-
ple by using a piecewise planar model and aligning multiple
planes simultaneously. Further, a user may want to write
new information on the surface. In that case, the system
would need a way to gradually update the new reflectance
properties.

Although much future work remains, we have demon-
strated, at the very least, the feasibility of the approach.
With some optimizations, we consider that, for future appli-
cations using projector-camera systems, direct image align-
ment could become the basis of spatial augmented real-
ity. Further, to encourage future research in this direc-
tion, we are making the whole software system available as
open source on our Web site:
http://www.ok.ctrl.titech.ac.jp/~saudet/procamtracker/ .

Acknowledgments

This work was supported by a scholarship from the
Ministry of Education, Culture, Sports, Science and Tech-
nology (MEXT) of the Japanese Government.

References
[1] S. Audet and M. Okutomi. A User-Friendly Method to Ge-

ometrically Calibrate Projector-Camera Systems. In Pro-
ceedings of the 2009 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR 2009)
- Workshops (Procams 2009), pages 47–54. IEEE Computer
Society, June 2009.

[2] S. Baker, A. Datta, and T. Kanade. Parameterizing Homo-
graphies. Technical Report CMU-RI-TR-06-11, Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA, March
2006.

[3] S. Baker and I. Matthews. Lucas-Kanade 20 Years On: A
Unifying Framework. International Journal of Computer Vi-
sion, 56(1):221–255, March 2004.

[4] D. Bandyopadhyay, R. Raskar, and H. Fuchs. Dynamic
Shader Lamps: Painting on Movable Objects. In Proceed-
ings of the IEEE and ACM International Symposium on Aug-
mented Reality (ISAR’01), page 207. IEEE Computer Soci-
ety, 2001.

[5] A. Bartoli. Groupwise Geometric and Photometric Direct
Image Registration. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 30(12):2098–2108, December
2008.

[6] O. Bimber and R. Raskar. Spatial Augmented Reality: Merg-
ing Real and Virtual Worlds. A. K. Peters, Ltd., Natick, MA,
USA, 2005.

[7] G. Bradski and A. Kaehler. Learning OpenCV: Computer
Vision with the OpenCV Library. O’Reilly, 2008.

[8] D. Caspi, N. Kiryati, and J. Shamir. Range Imaging With
Adaptive Color Structured Light. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 20(5):470–480,
1998.

[9] X. Chen, X. Yang, S. Xiao, and M. Li. Color Mixing
Property of a Projector-Camera System. In Proceedings of
the 5th ACM/IEEE International Workshop on Projector-
Camera Systems (Procams 2008), pages 1–6. ACM, 2008.

[10] P. E. Debevec and J. Malik. Recovering High Dynamic
Range Radiance Maps from Photographs. In Proceedings
of the 24th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’97), pages 369–378.
ACM Press/Addison-Wesley Publishing Co., 1997.

[11] R. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, Second edi-
tion, 2004.

[12] International Electrotechnical Commission. IEC 61966-2-1
(1999-10-18): Multimedia systems and equipment - Colour
measurement and management - Part 2-1: Colour manage-
ment - Default RGB colour space - sRGB, 1999.

[13] T. Johnson and H. Fuchs. Real-Time Projector Tracking
on Complex Geometry Using Ordinary Imagery. In Pro-
ceedings of the 2007 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR ’07) -
Workshops (Procams 2007), pages 1–8. IEEE Computer So-
ciety, June 2007.

[14] B. Leibe, T. Starner, W. Ribarsky, Z. Wartell, D. Krum,
B. Singletary, and L. Hodges. The Perceptive Work-
bench: Towards Spontaneous and Natural Interaction in
Semi-Immersive Virtual Environments. In Proceedings of
the 2000 IEEE Virtual Reality Conference, pages 13–20.
IEEE Computer Society, March 2000.

[15] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry. An Invitation
to 3-D Vision: From Images to Geometric Models. Springer-
Verlag, London, UK, 2003.

[16] R. Raskar, J. van Baar, P. Beardsley, T. Willwacher, S. Rao,
and C. Forlines. iLamps: Geometrically Aware and Self-
Configuring Projectors. In Proceedings of ACM SIGGRAPH
2003, pages 809–818. ACM, 2003.

[17] R. Raskar, G. Welch, M. Cutts, A. Lake, L. Stesin, and
H. Fuchs. The Office of the Future: A Unified Approach
to Image-based Modeling and Spatially Immersive Displays.
In Proceedings of the 25th Conference on Computer Graph-
ics and Interactive Techniques (SIGGRAPH ’98), pages 179–
188. ACM Press, 1998.

[18] G. Silveira and E. Malis. Real-time Visual Tracking under
Arbitrary Illumination Changes. In Proceedings of the 2007
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR ’07). IEEE Computer Society,
June 2007.

[19] P. Song and T.-J. Cham. A Theory for Photometric Self-
Calibration of Multiple Overlapping Projectors and Cam-
eras. In Proceedings of the 2005 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recogni-
tion (CVPR ’05) - Workshops (Procams 2005), volume 3,
page 97. IEEE Computer Society, 2005.

[20] N. Takao, J. Shi, and S. Baker. Tele-Graffiti: A Camera-
Projector Based Remote Sketching System with Hand-Based
User Interface and Automatic Session Summarization. Inter-
national Journal of Computer Vision, 53(2):115–133, July
2003.

[21] B. Triggs. Autocalibration from Planar Scenes. In Proceed-
ings of the 5th European Conference on Computer Vision
(ECCV ’98), volume I, pages 89–105. Springer-Verlag, 1998.

[22] D. Wagner and D. Schmalstieg. ARToolKitPlus for Pose
Tracking on Mobile Devices. In Proceedings of the 12th
Computer Vision Winter Workshop 2007 (CVWW’07). Graz
University of Technology, St. Lambrecht, Austria, February
6–8, 2007.

[23] Z. Zhang. A Flexible New Technique for Camera Calibra-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(11):1330–1334, 2000.

