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Abstract

Computer vision allows machines to understand their surroundings through
video cameras. We can use this understanding to design user interfaces that
work with everyday objects. The system can also use video projectors to dis-
play feedback directly on these objects. However, the projection can severely
alter their appearances to the point where traditional computer vision algo-
rithms fail. We propose an image alignment method that not only can work
under these conditions, but that harnesses the knowledge of the displayed
content as additional information to help the system align it with object sur-
faces. We implemented in software an algorithm that successfully executes
on planar surfaces and commodity hardware at about two frames per second
with subpixel accuracy. We also designed user-friendly methods to perform
the required geometric and color calibration. Although slow and limited to
planes, we proved the viability of the concept, paving the way for future
optimization and generalization.
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Chapter 1

Introduction

Traditional applications of augmented reality superimpose generated images
onto the real world through goggles or monitors held between objects of
interest and the user. The display must usually follow objects and developers
often choose cameras to perform tracking, as computer vision methods are
flexible and nonintrusive. Since the augmented objects remain in reality
unchanged, we do not need to change the image processing algorithms either.
One can directly apply existing computer vision techniques for tracking or
other purposes. However, with spatial augmented reality [7], we instead
use video projectors to display computer graphics or data onto surfaces, as
exemplified in Figure 1.1. In this case, the appearance of the objects may be
severely affected, requiring new methods.

1.1 Literature Review
To avoid the difficulty, current methods either exploit information channels
that do not overlap with the displayed content or make assumptions that
restrict their usefulness. Some use fiducial markers, such as iLamps [28],
or a special tracking system not based on visible light, such as Dynamic
Shader Lamps [6], but users need to paste specially prepared markers to ob-
jects they might want to interact with. Others have designed imperceptible
structured light, such as used in the Office of the Future [29]. However, this
not only reduces the dynamic range of the projector, but requires a syn-
chronized projector-camera system running at frequencies higher than 60 Hz
to avoid flicker. More simply the Perceptive Workbench [24] has adopted
near-infrared cameras and uses computer vision to track without interfer-
ence from the projector, but calibrating projectors and cameras whose light
spectra do not overlap can be problematic. Although all the above options
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Figure 1.1: Snapshot of our demo video showing the patterns of Figure 5.5,
where the system has aligned the projector displayed pattern with the printed
one.

work, they cannot directly align displayed content with real world texture.
They solely depend on accurate geometric calibration between the sensors,
the projectors, and the real world objects. Also, the system does not see the
same thing as the user, possibly causing confusion when the algorithm fails.
In another direction, Tele-Graffiti [35] features a paper tracking algorithm
that detects the orientation of a piece of paper or a clipboard inside the im-
ages captured using a normal camera. The authors designed the algorithm
robustly enough to work in the one limited case where the edges of the rect-
angular object differ markedly from the background, but they still consider
the displayed content from the projector as unwanted interference.

In a nutshell, the performance of markerless tracking leaves to be desired.
If spatial augmented reality is to become the basis for a new paradigm of
user interaction, we need more general, robust, and easy-to-use methods.

1.2 Proposed Method
Contrarily to existing approaches that treat the displayed content as inter-
ference, we propose to harness its knowledge as additional information that
can help the system align it with real world objects. More specifically, we
derived a direct image alignment algorithm that takes projector illumination
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into account using a generative model. It models how the light coming out of
the projector reflects onto a real world object and comes back in the camera.

In theory, the model can work with an uncalibrated system, but a cali-
brated one can more easily achieve successful alignment. Calibration amounts
to finding the internal and external geometric and color parameters of both
camera and projector. Although calibration methods exist, they are cumber-
some, impractical, and could not realistically become part of an augmented
reality system that anyone could use under a large range of casual conditions,
such as the one shown in Figure 1.2. For this reason we also designed geo-
metric and color calibration methods, which we briefly introduce next, that
users of any background may easily perform.

1.3 User-Friendly Calibration
A lot of methods to geometrically calibrate projector-camera systems, [1,
2, 18, 22, 27, 38] among others, operate in two phases: they first calibrate
cameras, then they calibrate projectors. Calibrating cameras in one way and
projectors in another automatically doubles the effort. To reduce the amount
of work, researchers have proposed methods that integrate both calibrations
together. They either exploit structured light or color channels, or both with
one-shot structured light.

Figure 1.2: Snapshot of our demo video showing the test user calibrating a
casually installed projector-camera system.
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In the case of methods using structured light, [12, 16, 23, 25, 38] among
others, during the calibration process, the machine may shut the projector
off, capture an image, then project structured light, capture more images,
and by decoding everything can geometrically relate images together. The
ones captured with the projector off are used to calibrate the camera, and the
rest, to calibrate the projector. Even though this procedure works, we need
to secure physically the calibration target in place, because within a given set
of images the machine assumes that the scene is static, often a requirement
of structured light. We cannot simply hold a board in our hands in front of
the projector-camera system.

To capture two images simultaneously, we can also exploit color channels,
[1, 2, 16, 17, 38] among others, usually the red and blue ones. With properly
designed complementary colors for the physical and projected patterns, we
can recover them separately, e.g.: White and cyan squares show clearly in the
red channel of a camera, but should hopefully not appear in the blue channel.
While this obviously does not work for grayscale projectors, cameras, and
printers, even with color ones, this approach presents two problems. First,
depending on the properties of the color filters and inks, the blue channel of
the projector might still interfere with the red channel of the camera, and vice
versa. For example, results from Chen et al. [10] show a 4% overlap between
the red channel of their camera and the blue channel of their projector, and
the same the other way around. Second, many cameras use only one sensor
with an appropriate array of color filters, such that the resolution of the blue
and red channel is half of the resolution of the whole sensor. Both of these
issues may hurt accuracy, although current results are not conclusive, but
more importantly requiring color complicates the execution of calibration.

As for color calibration, current methods [9, 10, 11, 21, 32] require either
control over the shutter speed of the camera, more than one projector, or
an elaborate 3D contraption, but we wanted a method that works without
camera control and with only one projector and a planar surface.

For all the above reasons, we propose instead a user-friendly method to
perform full geometric and color calibration of a projector-camera system. It
is based on fiducial markers typically used for augmented reality applications.
Fiala and Shu [14] proposed such a method for camera-only systems. We
extend it to projector-camera systems plus color calibration, where half of
the markers are physically printed, and half are projected using the projector.
Each marker on its own carries information and can easily be identified. As
we describe in this document, this allows the machine to prewarp markers
that are projected, in a way that does not interfere with printed markers.
Moreover, markers do not need color, and unlike structured light users can
hold the calibration board in their hands. The user simply has to wave the
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calibration board, ideally at angles of approximately 45◦ with respect to the
image plane as recommended by Zhang [39], and the machine automatically
captures and saves about ten good images, with which it computes calibration
parameters for both the camera and the projector. The machine also uses the
markers to detect blank regions on the calibration board, which it takes as
reference white to calibrate the colors. Color calibration is relatively simpler
since we found that a strictly linear model to match colors between the
camera and the projector works well.

Our results show that users could perform full geometric and color cal-
ibration in less than one minute, a use case that we consider user-friendly.
Calibration results are also accurate, with less than one pixel of geometric
error and, for color, a correlation coefficient R2 of virtually one.

1.4 Direct Image Alignment
Once fully calibrated, image alignment becomes more robust. Nevertheless,
even given calibration, it remains a challenging task. As a first step, we de-
cided to make a few simplifying assumptions. Most importantly, the object
must be planar and feature diffuse reflectance properties with no specular
reflections. Still, thanks to the inherent robustness of direct alignment meth-
ods, we found that the algorithm can cope with large amounts of noise. To
provide some results, we implemented in software our method for planar
surfaces.

At this time, the program runs only at about two frames per second on
commodity hardware, and this restricts the speed at which a user can move
the object, but it achieves subpixel accuracy. Future research will revolve
around optimization and generalization.

In the following sections, we first describe in more details the system
model and its simplifying assumptions, the required geometric and color cal-
ibration procedures, including the detection of fiducial markers, the calibra-
tion patterns used, the prewarp of the projector pattern, and the real-time
algorithm, and finally the direct image alignment algorithm itself, which min-
imizes a cost function that requires initialization when presented with a new
planar surface. To simplify the explanations, we describe a system with only
one camera and one projector, yet it can easily be extended to any number
of them.
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Chapter 2

System Model

A projector-camera system can be treated as a stereo pair, and multiple
view geometry [19] still applies as is. However, unlike traditional stereo
systems made from two or more similar camera devices, color information
does not transfer as easily from a projector to a camera. We need a more
sophisticated color model. In this section, before describing the geometric
and color models, to simplify them, we start by enumerating assumptions we
found useful.

2.1 Simplifying Assumptions
We first assume that the projector and camera are fixed together, like a
typical stereo camera, implying that the strong epipolar constraint applies.
The system may nonetheless move with respect to the scene or vice versa, the
problem remains unchanged. Secondly, the color responses of both camera
and projector must be linear with respect to the light intensity. We consider
this to be reasonable for two reasons. On one hand, this is typically the case
of CCD or CMOS sensors. On the other hand, most devices today follow the
sRGB color space standard [20] that features a well defined color response
curve approximating a transfer function with a gamma of 2.2, from which
the intensities can be linearized. We expect any deviations to be engulfed
in the inaccuracies introduced by the unknown light sources and reflectance
properties of the surface material, which brings us to the third assumption.
The scene consists of a planar object with a matte surface exhibiting diffuse
reflectance, where the radiance changes smoothly and constantly as the angle
and distance vary. In particular, specularities are not modeled. Lastly, all
light shining on the plane comes from point sources at infinity, such that no
local shadows or highlights appear. Only global changes in illumination are
observed, which we refer to as ambient light.

10



2.2 Geometric Model
To geometrically model both camera and projector devices, we use the com-
mon pinhole camera model [19]. Although originally designed for cameras,
it also applies to projectors. It maps a 3D point x3 of the surface to

x2 = K3×3 ( R3×3x3 + t3 ), (2.1)
a 2D point on the image plane of the device, where K, the camera matrix,
contains the internal parameters or intrinsics, and where R and t, the external
parameters or extrinsics, model the orientation and position in 3D space of
the device. It follows that the projection onto the image planes of a camera
placed at the origin and of a calibrated projector can be respectively written

xc = Kc ( I x3 + 0 ), (2.2)
xp = Kp ( Rpx3 + tp ). (2.3)

To avoid confusion, we refer to the matrix K as the camera matrix even
in the case of a projector. Further, even though equations dealing with
homogeneous coordinates are only equal up to an arbitrary scaling factor,
we use the equal sign for convenience and clarity.

2.3 Color Model
While the geometric model of a device stands independently on its own,
for the color model, we decided instead for simplicity to model only the
relationship between devices. Specifically, if a projector pixel shines the color
pp on a surface point of reflectance ps, we expect the corresponding camera
pixel to observe the color

pc = ps × [ gX3×3pp + a ] + b, (2.4)
where g is the gain of the projector light, which we assume varies smoothly
and constantly with the distance and angle to the surface; X is the color
mixing matrix as defined by Chen et al. [10], also called the “projector-
camera coupling matrix” by Caspi et al. [9]; a, the ambient light; and b,
the noise bias of the camera. All vectors are three-vectors in the RGB color
space, and their multiplication is done elementwise. We derived the model
directly from the bidirectional reflectance distribution function (BRDF) of
a flat matte surface, which Johnson and Fuchs [21] have shown to be valid
in the case of projector-camera systems. Although the equation explicitly
models the relation between only one camera and one projector, as long as
one identifies the reference device, the model can adapt to any number of
them.
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Figure 2.1: Sketch of the image formation model.

2.4 Image Formation Model
Using the geometric and color models, we can simulate how an image forms
on the sensor of the camera. The explanation that follows is also summarized
in Figure 2.1. Assuming the geometric parameters n of the plane are known
and given a 3D point x3 on the surface plane such that nTx3 + 1 = 0, it
follows that the 2D point xp from Equation 2.3 can also be expressed as

xp = Kp ( Rpx3 + tp )
= Kp ( Rpx3 − tpnTx3 ) since nTx3 = -1
= Kp ( Rp − tpnT ) x3 (2.5)
= Kp ( Rp − tpnT ) K−1

c xc

= Hpc xc,

where the before last substitution comes from the fact that homogeneous
vector xc from Equation 2.2 can be arbitrarily scaled to fit in. This shows
that a camera pixel xc is transformed by a homography Hpc into the projector
pixel xp. From this we define the warping function from the camera image
plane to the one of the projector:

wp(xc) ≡ Hpc xc. (2.6)

This corresponds to step 1 in Figure 2.1.
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Similarly, one can map a camera image point xc onto a point xs of the
image of the surface plane, assumed to have been initialized at a prior moment
using the same camera. The camera motion Rs, ts required to return to the
prior orientation and position can be seen as a second camera (one can think
of it as the “surface camera”) with the same set of internal parameters, but
with different external parameters, as follows:

xs = Kc ( Rsx3 + ts )
= Kc ( Rsx3 − tsnTx3 ) since nTx3 = -1
= Kc ( Rs − tsnT ) x3 (2.7)
= Kc ( Rs − tsnT ) K−1

c xc

= Hsc xc,

which again becomes a homography Hsc that this time maps current camera
points xc to surface points xs, from which we define another warping function:

ws(xc) ≡ Hsc xc. (2.8)

This corresponds to step 2 in Figure 2.1.
Finally, plugging these coordinates into the color model of Equation 2.4

by considering the pixel colors pc, ps, and pp as functions over the images,
we expect the pixel color at point xc of the camera to be

pc(xc) = ps(ws(xc))× [ gXpp(wp(xc)) + a ] + b. (2.9)

This corresponds to the final third and fourth steps in Figure 2.1.
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Chapter 3

User-Friendly Calibration

Before we may use them, these models require a number of parameters to be
known, which we can find via calibration. We proceed in a manner similar
to current methods for both geometric parameters (Kc, Kp, Rp, and tp) [3,
39] and color parameters (X and b) [9, 10], but we assume linearized color
responses from the start. We first explain geometric calibration, since it
can be carried out without color information, while the latter requires prior
geometric knowledge.

3.1 Geometric Calibration
To geometrically calibrate the system, we use as is our previously proposed
method [3]. It is based on fiducial markers typically used for augmented
reality applications. Half of the markers are physically printed in black,
and half are displayed in white using the projector, as shown in Figure 3.1.
Each marker on its own carries information and can easily be identified. As
described below, this allows the machine to prewarp projector markers in
a way that does not interfere with printed markers. The user simply has
to wave the calibration board in front of the projector and camera, and the
machine automatically captures and saves about ten good images, with which
it computes calibration parameters for both the camera and the projector via
Zhang’s method [39]. Also, markers do not need color, so one can calibrate
the geometry before the colors.

3.1.1 Detection of Fiducial Markers
As fiducial markers, we opted for the BCH code provided by ARToolKitPlus [37].
Two examples with IDs of 0 and 1 are shown in Figure 3.2. There are 4096
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Figure 3.1: Sample camera image captured during geometric calibration,
where the projector markers are in white, and the printed markers in black.

such unique markers, arranged in squares of 8× 8 black or white subsquares
composing the black border and 36 interior bits, for only 12 bits of data, thus
featuring strong error correction capabilities. Once printed or projected on
a sheet of paper and imaged sufficiently large by a camera, ARToolKitPlus
can detect these markers. Basically, the software first binarizes the image at
an appropriate threshold, then analyzes contours to find shapes close to a
quadrangle, estimates the four corners, and warps the shapes into squares,
thus removing projective distortion from the camera. Lastly, by decoding
the BCH code inside the squares, it recovers the IDs of the markers. In our
case, even if a detected quadrangle is not a marker, since we use a small
amount of markers and thanks to error correction, the decoding would most
likely simply fail. Fiala [13] provides a more detailed analysis for markers
used by ARTag, which are similar to the BCH code used by newer versions
of ARToolKitPlus.

While ARToolKitPlus provides most of the desired functionality, we had
to add two more features: adaptive thresholding and subpixel corner extrac-
tion. The former finds an optimal threshold for binarization even if the level
of brightness varies across the image. The latter refines the location of the
detected quadrangles, in the original grayscale image.

Adaptive thresholding adjusts the threshold depending on the local neigh-
borhood of each pixel. We adopted Sauvola and Pietikäinen’s method [30],
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(a) ID = 0. (b) ID = 1.

Figure 3.2: Two sample fiducial markers with IDs 0 and 1 made from the
binary-coded BCH code of ARToolKitPlus.

which sets the threshold for each pixel (x, y) to

t(x, y) = m(x, y)×
[
1 + k

(
s(x, y)

128 − 1
)]
, (3.1)

where k is a parameter close to zero, usually [0.0, 0.5], and where m(x, y)
and s(x, y) are the local mean and the local standard deviation, which are
computed within a neighborhood of (x, y). In our case, we considered an
adaptive neighborhood size, instead of a constant one. If the variance is
very low, then the intuition is that the window of the neighborhood is too
small. We need to make it larger to compute a good threshold. Inversely, if
the variance is very high, then it is too large. We are no longer analyzing
local statistics and the threshold would not be optimal. For each pixel, we
thus need to adapt the window size dynamically. We chose to do a binary
search to find the size where the standard deviation s(x, y) drops below a
certain threshold. Assuming a grayscale image with pixel values in the range
[0, 255], since the maximum standard deviation is a bit less than 128 and the
minimum is 0, we found 64 to be an appropriate threshold. We implemented
an efficient algorithm based on integral images that runs in O(N2 logN) time
for an N ×N image.

For subpixel corner extraction, we were able to use directly the code
provided in OpenCV [8]. The algorithm works by first considering a small
window (e.g., 11 × 11) around the pixel of interest in the original grayscale
image. It then assumes that the following holds for all subpixels x in the
window:

(c− x) · ∇x = 0 , (3.2)
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(a) Printed pattern. (b) Projector pattern.

Figure 3.3: Sample calibration patterns composed of matrices of markers.

where c is the exact subpixel corner location and ∇x is the gradient at x.
This is true if either ∇x equals 0 or is orthogonal to (c− x), which is valid
for a corner (but also for a straight edge, so it cannot be used for corner
detection). The algorithm finds the minimum of this function, which is not
normally zero because of noise and nonlinear distortions.

In this manner, we obtain for each marker an ID and the subpixel coor-
dinates of its four corners.

3.1.2 Calibration Patterns
Even though it is possible to calibrate using only four corners from only
one marker, to obtain best calibration accuracy, we should in fact attempt
to cover the largest area possible with a great amount of corners [34]. As
calibration pattern, we decided to use a matrix of markers, similar to the one
that Fiala and Shu [14] used, but where half of the markers are printed and
the other half come from the projector, as shown in Figure 3.3. As explained
in more details below, the projector markers are in inverted color, since it
helps to detect them when projected on top of printed markers. Given the
minimum focus distance of our projector, we found that 20×20 mm2 markers
spaced every 30 mm on a B4 size board works well. This gives a total of 12×8
markers, half of which are printed and the rest from the projector.

If one uses a board larger than the field of views, the system would ob-
viously never be able to detect some markers, but as long as it can detect
enough of them, there is no problem. In fact, since corners may in that case
fully cover the image planes, it should improve accuracy.

In any case, images captured by the camera contain a mix of both markers.
For a given image to be considered appropriate for calibration purposes, the
patterns need to be aligned well enough such that the markers from the
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Figure 3.4: The ideal image that would be created by projecting the pattern
from Figure 3.3(b) over Figure 3.3(a) under perfect alignment.

projector do not interfere with the printed ones, and vice versa, as shown in
Figure 3.4. In the following section, we explain how to accomplish this by
prewarping the projector pattern.

3.1.3 Prewarp of the Projector Pattern
For camera-only systems, we can easily accommodate the number of corners
shown in Figure 3.4, but this is challenging for projector-camera systems, be-
cause we need to image both physical corners and projector corners. Without
proper considerations, the pattern from the projector would interfere with
the printed one. In this section, we show that, to prevent interference, pre-
warping the projector markers does not change the calibration problem.

The prewarp transformation that we derive is a homography. Although
the patterns contain many markers, we actually only need one to estimate
a homography with maximum likelihood under the assumption of Gaussian
noise [19]. Still, at least a few markers have to be decodable to compute a
meaningful estimate of the error. In cases of large errors, the patterns are
not well aligned, and we should not use the estimate for calibration purposes,
but we can take it to update the projector prewarp and hope to get a better
estimate from the next captured image. For this reason, we still need to find
that first homography between the camera and the board.

When a few printed markers are decoded, that homography Hbc satisfies

xb ≈ Hbcxc , (3.3)

where xb is a point on the board and xc, the corresponding point on the
camera image plane. Hbc is also the initialization information required to
calibrate a camera using Zhang’s method [39]. For the projector, we have
the similar relationship

yb ≈ HbcHcpyp , (3.4)
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where yb is a point on the board; yp, the corresponding point on the projector
image plane; Hbc, the homography as defined above; and Hcp, the homogra-
phy transforming points from the image plane of the projector to the one of
the camera, which we find using detected projector markers in the camera
image. With the combined homography HbcHcp, we can calibrate a projector
in the same way as a camera. This is how all current projector calibration
methods work. However, we can equivalently write

y′b ≈ HbcHcpy′p , (3.5)

where y′p = Hpyp and Hp is the homography that prewarps our projector
image. In other words, we can choose Hp, such that a transformed point y′p
on the image plane of the projector appears where we want it on the board,
y′b, selected as to not interfere with the printed pattern. Because HbcHcp
remains untouched, we can say that the calibration method is equivalent.

3.1.4 Real-Time Algorithm and Issues
The sections above fully cover the theoretical aspects, but the machine ex-
ecutes in practice an interactive real-time algorithm. One of its iteration is
depicted in Figure 3.5. First, it applies the prewarp of Section 3.1.3 to the
projector pattern and sends it to the projector. We assume the user holds at
all times the flat board with printed markers in front of the projector-camera
system. In this case, projector markers appear along side the printed ones.
The system can then continue and attempt to detect all printed and projec-
tor markers, one by one as explained in Section 3.1.1. If it considers that
the error on the detected corners is low enough (details below) it uses them
to update the prewarp homography. Further, if the patterns are aligned well
enough (details below) it saves their marker corners. Finally, it loops and
expects the user to move the board, unless enough corners have been saved,
at which point they are used for calibration.

Although a conceptually simple algorithm, a few thorny technical issues
remain. First, if we want the results of the subpixel detector to mean any-
thing, we must make sure the prewarped projector image contains as little
aliasing as possible. Next, when projector and printed markers overlap, it is
not usually possible to detect them. However, using inverted colors makes
them more easily detectable, even when they interfere with each other. Third,
even though we can derive a useful update for the prewarp from a rough
homography estimation, outliers do not help. Finally, the machine must
somehow judge when both patterns are aligned well enough and automati-
cally select images for calibration. In the following subsections we explain in
further details and provide practical solutions.
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Figure 3.5: Flowchart illustrating one iteration of the interactive real-time
algorithm.

Antialiased Projector Images

Typical projector calibration methods do not warp the projector image and
do not have to worry about aliasing. In our case, arbitrary warps produce
subpixel motion, and aliasing issues must be managed. As antialiasing mea-
sure, we opted for simple 4× supersampling [15], which gives good results
and executes fast enough in software. Basically, we first create an image
buffer that has four times the resolution of the projector. For example, a
4096 × 3072 image for a typical 1024 × 768 projector. Next, we draw the
markers in the high-resolution buffer using well know drawing and filling
algorithms [15] that work on a per-pixel basis. Since we make no attempt
at drawing at the subpixel level, this high resolution image contains a lot
of aliasing artifacts. However, when smoothed with simple averaging and
decimated by a factor of four, the resulting image is subpixel sharp and free
from problematic aliasing artifacts. Graphics processing units (GPUs) can
also usually perform this operation quickly and efficiently via OpenGL or
Direct3D, but the proprietary nature of the actual algorithms they use does
not amend itself well to reproducible results. In either case, the system must
then send the resulting image to the projector.
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Detection of Overlapping Markers

Afterward, if the user holds the calibration board in front of the projector
and camera, printed and projector markers usually overlap up to some de-
gree. Because of the limited dynamic range of a typical camera, if we use
black markers over a white background only, both black regions from the pro-
jector and regions printed in black appear in the same shade of black. Any
overlapping markers do not appear as quadrangles anymore, and detection
fails. To remedy, we observed that using projector markers with inverted
colors (i.e., white markers over a black background) overlapping markers are
more robustly detected. This can be explained by the fact that with mark-
ers designed this way, the camera automatically images as gray the empty
regions of the board, while black printed regions appear black, and white pro-
jected regions appear white, naturally providing orthogonal intensity ranges
for both types of markers. For this reason, we use inverted colors for pro-
jector markers. In addition, the machine can easily adjust the brightness of
the markers to match the ambient light and fall within the dynamic range
of the camera or alternatively, in dark environments, use the projector as an
adjustable source of light, by setting the minimum intensity of pixels.

Rough Homography Estimation

Even if overlapping markers are detected, the accuracy of their corners might
obviously suffer, and consequently any homography we might estimate from
them. In extreme conditions, markers may also be incorrectly detected. To
compensate, we found it works well to reject homographies with large errors
(e.g., with an RMSE, root mean square error, greater than 10 pixels, or higher
for strong nonlinear distortions). One marker, which has only four corners,
always fits a homography perfectly, so this also implies that the minimum
number of detected markers must be two. While an RMSE of 10 pixels is still
unacceptable for calibration, the hope is that updating the prewarp with this
rough estimate moves the markers to a better position in the next captured
image.

Automatic Image Selection

Eventually, the machine should be able to detect a lot of the projector and
printed markers (e.g., over 50% for each). Also, if the corners of the calibra-
tion patterns have not moved much from the last captured image (e.g., less
than 5 pixels on average, depending on the slight movements from the user or
oscillations when updating and applying the prewrap), then the system as-
sumes that the patterns are aligned well enough, their motion blur negligible,
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and saves the detected corners for later calibration. Nevertheless, if the user
does not move the board, it would keep saving corners, but similar images
are not useful for calibration. For this reason, we added another criterion.
The system only selects an image if, since the last saved one, the corners of
the calibration patterns moved a lot (e.g., more than 50 pixels on average).
When enough images have been selected (e.g., 10 images), then all the saved
corners go to the final stage: camera and projector calibration.

3.1.5 Calibration Algorithm
Once a sufficient amount of accurate corners have been accumulated, the
calibration algorithm can process them directly. Using only the corners from
printed markers xb and their detected corners xc, OpenCV [8] can calibrate
the camera with no difficulties using Zhang’s method [39]. For the projector,
on the other hand, we must first remove the linear (projective) and nonlinear
(radial, etc.) distortions of the camera from the projector corners. Note that
removing projective distortion is equivalent to applying the homography Hbc
of Equation 3.5 to the imaged corners. Using such undistorted corner points
y′b on the board and corresponding y′p on the image plane of the projector, we
can apply the same method to calibrate the projector. Figure 3.6 illustrates
the dataflow involved.

Although we have been writing about corners all along, we can also cali-
brate using the center of each marker. A center is defined as the physical point
present in the middle, at the intersection of the diagonals. When nonlinear
distortions are small, as is usually the case of projectors, Fiala and Shu [14]

Marker corners
(from all images)

Undistorted
marker corners

Calibrate camera
(OpenCV)

Remove linear and
nonlinear distortions

of the camera

Calibrate projector
(OpenCV)

Start

End

Figure 3.6: Dataflow diagram for calibrating the camera and the projector.
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showed that we can obtain better results using centers than corners. This
happens because corners that are not perfectly in focus are not accurately
extracted. This is especially relevant in the case of projectors, since they
usually have a narrow depth of field. To illustrate the problem, Figure 3.7
shows the lower left area of the detected markers in Figure 3.5: The edges of
the defocused projector markers make them appear larger than they really
are. Using what amounts to the average of the four corners lowers this bias.

3.2 Color Calibration
Once the geometric parameters of both the camera and projector have been
estimated, the color calibration uses them to understand which portion of
the calibration board can be covered by the projector. We then define that
portion as a surface of white reference reflectance ps = (1, 1, 1), information
required to calibrate the colors. For simplicity, we reuse the same marked
board (Figure 3.8). Further, the printed markers allow the machine to ex-
tract blank spots automatically, as shown in Figure 3.9. One may notice a
vignetting effect, since the points in the middle are in reality closest to the
projector. During calibration, if the board remains more or less at the same
position, this reduction of brightness can be ignored as the algorithm only
cares about the average.

Figure 3.7: Lower left area of the detected markers from Figure 3.5. We can
observe severe defocusing of projector markers.
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Figure 3.8: Sample camera image captured during color calibration when the
projector displays the color blue at maximum intensity.

Figure 3.9: Blank area automatically extracted from Figure 3.8, whose aver-
age is used during color calibration.
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The procedure itself goes as follows. First, the user must disable all
onboard processing of the camera (no brightness, sharpness, white balance,
hue, saturation, gamma, gain, etc.), and has to manually adjust the aperture
and set the electronic shutter to a short enough exposure to avoid saturation
at the highest projector intensity. Secondly, to find the camera noise bias b
of Equation 2.4, one must blind the sensor and take the intensity values of
the resulting image. We found it to be zero for all pixels of our camera, and
in general we think it may safely be ignored as well. Next, by placing the
calibration board in front of the projector and the camera, the system can
detect its presence and start displaying and capturing an array of colors for
calibration. For each color, it initially finds the pose of the calibration board
via the detected markers, and assumes a gain g = 1. The pixel intensities
are then averaged over the blank area of the board (Figure 3.9). Finally,
the color mixing matrix X and the ambient light a remain the only two
unknown parameters of Equation 2.4. They can be estimated by linearly
regressing a sufficient number of samples. We found it enough to take a total
of 4× 4× 4 = 64 samples at constant intervals from the RGB color space of
the projector as shown in Figure 3.10.

Figure 3.10: Samples from the RGB color space of the projector used during
color calibration.
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Chapter 4

Direct Image Alignment

Based on the simplifying assumptions mentioned above, the described mod-
els, and the parameters obtainable via calibration, we designed an iterative
algorithm to directly align images of projector-camera systems. In this sec-
tion, we describe the cost function and the algorithm to minimize it, which
can hopefully converge to the correct alignment under normal circumstances.
Following this, we provide details as to how one may initialize the algorithm
for a new surface plane. However, we first assume that the parameters n and
reflectance ps of the surface plane found during initialization are known.

4.1 Cost Function
We want to find an optimal set of parameters that best align the images.
Intuitively, these parameters should minimally model the relative motion
between the surface plane and the projector-camera system, since all other
parameters are determined either during calibration or initialization. Look-
ing back at Equations 2.6 and 2.8, these unknown parameters relating to
motion are Rs and ts, a typical egomotion problem. This represents six de-
grees of freedom. Four other degrees of freedom come from the gain g and
the ambient light a, which we assumed may change during motion, for a
total of ten degrees of freedom and thus ten parameters to optimize. We
can then formulate our goal into a cost function to minimize, which basically
consists of the norm of the residual between the observed camera image and
the expected image as defined by Equation 2.9, i.e.:

min
Rs,ts,g,a

∑
xc

||pc(xc)− ps(ws(xc; Rs, ts))× [ gXpp(wp(xc; Rs, ts)) + a ]− b||2,

(4.1)
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adding up to the maximum likelihood estimate (MLE) under the assumption
of Gaussian noise. We chose the two-norm to simplify the implementation
of the traditional Gauss-Newton optimization algorithm favored for image
alignment problems [5], but more robust norms could also be used.

4.2 Minimization
To minimize the cost function of Equation 4.1, while one could optimize the
3D motion parameters directly, because of the inherent ambiguity between
3D rotation and translation, the convergence properties lack robustness [4].
From our own experiments, we also came to the same conclusion. For this rea-
son, we instead decided to optimize the 2D homography Hsc of Equation 2.8
using a four-point parametrization [4], which does not exhibit this problem
and from which we can easily extract the desired motion Rs and ts [36]. This
however raises the number of parameters from six to eight, while the ac-
tual 3D motion remains at six degrees of freedom. To gain more robustness,
we implemented constrained Gauss-Newton optimization using a Lagrange
multiplier [26] to limit results to physically possible transformations. More
precisely, we based the constraint on the Frobenius norm

|| Hsc −Kc ( Rs − tsnT ) K−1
c ||F = 0. (4.2)

While we have not done extensive testing and can only hypothesize about
its effect on the convergence properties, we noted that on average it shaved
about 10% off the number of iterations required to converge.

For simplicity and contrarily to Lucas and Kanade [5], we decided to eval-
uate the Jacobians numerically. This avoids the need to precompute image
gradients and to analytically derive the cost function. Computationally, it
does not appear to be less efficient. While the more usual algorithm would
warp per iteration only four images instead of sixteen (two homographies),
it would require twice the number of image multiplications to evaluate the
derivatives and twice the amount of (cache) memory to hold image gradients.
Nevertheless, we plan to investigate this in the future.

For additional robustness and performance, we implemented the tradi-
tional coarse-to-fine multiresolution estimation, where each level higher in
the resolution pyramid is first smoothed with a 5 × 5 Gaussian filter and
then subsampled by a factor of two. We found that five levels gave best
results. For an initial image of 1024 × 768 pixels, this means low resolution
images down to 64× 48 pixels.
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4.3 Initialization
The above minimization algorithm works only if the surface plane parameters
n are known. The reflectance map ps also needs to be acquired somehow.
Equation 2.4 shows that solving for the two unknowns ps and a requires cap-
turing at least two images from the camera. Although there are undoubtedly
many possible ways to perform initialization, we designed an approach that
can cope with small movements, allowing users to hold the surface plane in
their hands. This approach works in three phases, by first estimating the
ambient light a, then the reflectance map ps and finally the geometric plane
parameters n.

Concretely, the procedure goes as follows. It starts by the projection and
the capture as fast as possible of three consecutive images, to obtain images
with the smallest interframe motion possible, from which the user may select
a region of interest. For the first image, the system sets the projector color
pp to zero, and for the second, to maximum intensity pmax

p . (More details
about the third image below.) It can then estimate the ambient light using
the first two images by defining the reference gain g = 1 and isolating a from
Equation 2.4:

a = Xpmax
p

p1
c − b

p2
c − p1

c
, (4.3)

where p1
c is the color from the first image, and p2

c, from the second image.
To reduce the undesirable effect of motion, we use at this phase severely
smoothed versions of the first two images, for example by convolving with a
51× 51 Gaussian kernel, which is reasonable since we assumed that ambient
light varies only globally. This assumption also allows the system to ignore
points where p2

c − p1
c is too close to zero and to evaluate only the average.

The second phase consists of using the second image, this time the orig-
inal crisp version, along with the estimated ambient light to recover a crisp
reflectance map

ps = p2
c − b

Xpmax
p + a . (4.4)

For the third phase, the idea is to actually run the minimization algo-
rithm described in the previous subsection, optimizing not only for g, Hsc
and a, but also for n. As initial values, one can reasonably set g to 1, Hsc
to I (the origin), reuse the ambient light computed in the first phase, and
decide upon application-dependent plane parameters, for example frontopar-
allel at a distance of one meter. For the algorithm to converge properly
though, some sort of texture needs to be displayed on the surface plane. We
chose a fractal image, as shown in Figure 4.1, orthogonally aligned to the
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Figure 4.1: Fractal image displayed at the third phase of the initialization.

epipolar lines. Because this texture contains the same pattern at all scales,
running the minimization algorithm at multiple resolutions should allow for
easy and accurate convergence over a wide range of displacements. More for-
mally, assuming epipolar lines aligned with the x-axis, for image coordinates
x ∈ [x1, x2] the intensities assigned to the projector image equal

pp(x, y) =

f(x, x1, xm, 0, 0, 1) if x1 ≤ x < xm
f(x, xm, x2, 0, 0,−1) if xm ≤ x ≤ x2

, (4.5)

whose amplitude is scaled appropriately, and where

f(x, x1, x2, y1, y2, n) =
f(x, x1, xm, y1, ym, n

′) if x1 ≤ x < xm
ym if x = xm
f(x, xm, x2, ym, y2,−n′) if xm < x ≤ x2

, (4.6)

xm = x1 + x2

2 , ym = y1 + y2
2 + n, n′ = n√

2
. (4.7)

Although the barlike effect may give the impression of an image used for
structured light, the approach is totally different as our pattern contains no
code and tolerates well any surface texture.
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Finally, the resulting plane parameters n might be slightly off from the
values in the second image, from which the system actually derives the re-
flectance map ps. We need to transform it using the inverse of Rs and ts
to recover n0 of the second image. During image alignment in subsequent
frames, n gets calculated by applying to n0 new camera motions Rs and ts,
which is the reason why the warping function wp(xc; Rs, ts) depends on them.

30



Chapter 5

Results

The description of our methods is now complete, and we present here some re-
sults. We first programmed applications in Java that integrate ARToolKitPlus,
OpenCV, PGR FlyCapture, and libdc1394 as appropriate to implement the
procedures and algorithms described in this paper, then performed various
tests running the software on a Dell Vostro 400 computer with an Intel Core 2
Quad Q6600 2.4 GHz CPU, and obtained the results described in the fol-
lowing sections for the geometric and color calibration as well as the image
alignment algorithm.

5.1 Geometric Calibration
For geometric calibration, our test hardware consisted of a NEC LT157
(1024× 768 color LCD) projector and a PGR Grasshopper GRAS-14S5M-C
(1280×960 grayscale CCD) camera attached to a Fujinon HF16SA-1 (16 mm)
lens. As calibration target, we used the calibration patterns of Figure 3.3,
laser printed the first one on a B4 size sheet of paper and pasted it on a
(mostly) flat foam board.

Table 5.1: Reprojection RMSE, root mean square errors, in pixels after cal-
ibrating using our method with either corners or centers.

Reprojection RMSE (pixels)
Camera Projector

Corners 0.43 0.66
Centers 0.33 0.20
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Table 5.2: Reprojection RMSE, root mean square errors, in pixels of other
methods. For tidiness, we cite only the first author.

Authors Reprojection RMSE (pixels)
Camera Projector

Ashdown [1] 0.25 0.47
Audet [2] 0.23 0.52
Drouin [12] N/A 0.27
Gao [16] 0.63 0.43
Gao [17] 0.15 0.24
Griesser [18] < 0.4 < 1.5
Kimura [22] ≈ 0.3 ≈ 0.4
Legarda-Sáenz [23] 0.60 0.79
Li [25] 0.094 0.15
Zhang [38] ≈ 0.4 ≈ 0.6
Average 0.34 0.54

Camera capture via software trigger took on average 158 ms, the display
delay was about 64 ms, and the processing ran on only one core in approxi-
mately 350 ms, for a total of 572 ms per iteration. The test user could fully
calibrate both camera and projector within about 30 seconds of manipula-
tion. Figure 1.1 shows him in action on the casually installed system. The
full sequence can be downloaded from
http://www.ok.ctrl.titech.ac.jp/~saudet/procams2009.mp4 .

The reprojection errors, as listed in Table 5.1, also indicate that we were
able to obtain an accurate subpixel calibration from this test session, which
we could easily reproduce at will. Moreover, using a flatter wooden board,
we could obtain better results of less than 0.15 pixels for both camera and
projector. The errors also show that, as predicted, because the projector has
a narrower depth of field than the camera, it benefits more from the use of
marker centers.

For quick comparison, we summarize in Table 5.2 other reprojection er-
rors reported in the literature. For publications with more than one set of
numbers, we took only the best.
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Table 5.3: Sample output of the color calibration, with bias b = zero.

Color mixing matrix X Ambient light a 0.3949 0.04552 0.008233
0.05504 0.8004 0.08908

0.0009641 0.02049 0.2771


 5.947

9.551
3.114



5.2 Color Calibration
We could also obtain accurate results for color calibration. In this case, our
test hardware consisted of a NEC LT157 (1024×768 color LCD) projector and
a PGR Flea2 FL2G-13S2C-C (1280×960 Bayer color CCD) camera attached
to a Cosmicar C814 (8 mm) lens, and we used the same calibration board
as above. We placed in Table 5.3 a sample color mixing matrix obtained
with our hardware. As shown in Figure 5.1, we typically obtain a root mean
square error (RMSE) of approximately 0.5% of the total intensity range, and
a correlation coefficient R2 of almost one. This validates the assumptions
of linear response of the camera sensor and of the sRGB response curve of
the projector. One can observe that the green channel of the camera sensor
is the most sensitive and the blue channel, the least, as expected from the
specifications of the sensor.
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Figure 5.1: Predicted and observed intensities of the camera. Predicted
values computed as per Equation 2.4 using parameters of Table 5.3. Observed
values come from data taken during the color calibration using the sampling
pattern discussed in Section 3.2.
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5.3 Image Alignment
For image alignment, our test hardware consisted of a Casio XJ-S68 (1024×
768 color DLP) projector, and a PGR Flea2 FL2G-13S2C-C (1280 × 960
Bayer color CCD) camera attached to a Pentax H1212B (12 mm) lens. For
the surface planes, we inkjet printed the patterns described below on A4
size sheets of paper and pasted them on (mostly) flat foam boards. We
conducted two sets of experiments, one to measure accuracy quantitatively
by comparing alignment results with easy to detect markers and the other
to demonstrate real-time operation and support for arbitrary textures.

As representative of the current methods, we chose ARToolKitPlus [37],
plus OpenCV [8] for subpixel estimation, and compared its results with ours.
We put the texture of Figure 5.2 on the planar surface. This fractal pattern is
the 2D equivalent of Equation 4.5, but where triangles split the space at each
recursion. Obviously, we also used Figure 4.1 for the projector pattern in an
attempt to extract the best accuracy. On the resulting captured reflectance
image, the markers delimited an initial region of interest (ROI) of 197255
pixels. On each frame, we left our algorithm run until ten iterations in a
row did not lower the error of Equation 4.1 by more than 10%, taking on
average a total of 2450 ms. Table 5.4 lists the time taken by each iteration
at different levels of the resolution pyramid, where the warping function
alone took most of the time. From this, Figure 5.4 shows the difference in
pixels between our results and the centers of the four markers over the whole

Figure 5.2: The printed triangular fractal pattern along with four markers
that we used to obtain accuracy data.
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(a) frame 10 (b) frame 50

(c) frame 110 (d) frame 150

(e) frame 180 (f) frame 210

(g) frame 240 (h) frame 270

(i) frame 300 (j) frame 340
Figure 5.3: Frames from the marker test video with offline drawn red crosses
representing the detected markers and green rectangles denoting the corre-
sponding regions aligned by our program. The rectangle corners match the
crosses with subpixel accuracy as shown in the blowups.
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Table 5.4: Average time per iteration of the marker test.

Pyramid Camera Projector Average
Level Resolution Resolution Time (ms)
0 1280× 960 1024× 768 168
1 640× 480 512× 384 51
2 320× 240 256× 192 23
3 160× 120 128× 96 13
4 80× 60 64× 48 11
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Figure 5.4: Difference in pixels between our results and the centers of the
markers.
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test video. Although markers do not provide the ground truth either, we
consider the difference as errors of our algorithm since the error of corner
estimation should be less than 0.10 pixels [8]. The total root mean square
error (RMSE) sums up to 0.33 pixels, which even includes portions of motion
blur (e.g., Figure 5.3(b)) and images violating the assumed single gain g,
especially true of slanted planes. We placed shots of the frames as captured
by the camera in Figure 5.3. The full sequence can be downloaded from
http://www.ok.ctrl.titech.ac.jp/~saudet/markers_2009-11-14.mp4 .

To show that our program can also work with arbitrary textures and al-
most in real time, we tested it using the images shown in Figure 5.5, the
first pasted on the surface plane and the second displayed by the projector.
More precisely, after each frame, the system warped the projector pattern
to achieve a geometric correction on the physical plane by applying the ho-
mography Hps = HpcH−1

sc , which transforms points from the surface to the
projector. (Although we could also correct the projector colors to match the
printed one, we intentionally left them as is to differentiate them.) Figure 1.1
shows the system in action. We placed more shots of the demo video in Fig-
ure 5.6. The full sequence can be downloaded from http://www.ok.ctrl.
titech.ac.jp/~saudet/procamtracker_2009-11-14.mp4 . We limited to
300 ms the amount of time the program could spend iterating, which in re-
ality ran on average for 374 ms. Camera capture via software trigger took a
mean of 53 ms, the projector display delay was about 66 ms, and updating
the projector and camera images took approximately 80 ms. This gives a
total of 573 ms on average for each frame, close to two frames per second.

In both cases, the algorithm successfully converged given any displace-
ments reasonable for a direct alignment method [5]. We also found that the
single gain g used for the entire image was sufficient when all points of the
surface plane are not far from each other relatively to their distance from the
projector, which may be impractical for some applications.

(a) Printed on the board. (b) Projector displayed.

Figure 5.5: The images used for our demo video.
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(a) frame 833 (b) frame 863

(c) frame 1057 (d) frame 1156

(e) frame 1523 (f) frame 1614

(g) frame 4142 (h) frame 4162

(i) frame 4596 (j) frame 4637

Figure 5.6: Frames from our demo video. We grouped them in pairs of a
misaligned image caused by user motion followed by its correction.
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Chapter 6

Discussion and Conclusion

Judging from our calibration results and comparing them to data available
from previous methods, little of which include information about usability,
we conclude that our method is the easiest to use. A calibration session
that typically requires only a light board, a printed pattern, and less than
one minute justifies in our eyes this designation. Furthermore, the subpixel
accuracy and almost perfect color prediction achieved compare favorably with
all previous methods. Further, since we based our geometric method solely
on existing theory of camera calibration, assuming the noise characteristics
of projectors are similar to cameras, published results for those [34, 39],
with regards to the actual physical 3D accuracy, should translate similarly.
However, this remains to be proven. For the current work, we fulfilled our
main goal of user-friendliness. Moreover, we released the source code of
our calibration application as free software and named it ProCamCalib, a
screenshot of which we placed in Figure 6.1. It can be freely downloaded
from http://www.ok.ctrl.titech.ac.jp/~saudet/procamcalib/ .

As for the image alignment results, while they display good accuracy, we
conclude that the computational complexity is the main limitation of our
approach. To accelerate it, we plan on investigating mathematical approx-
imations, algorithmic tricks, as well as hardware related optimizations. We
have promising ideas on how to formulate an approximate model that the
inverse compositional (IC) image alignment algorithm [5] could work with.
To improve execution performance, we also tried to optimize the algorithm
for graphics processing units (GPUs), but sadly failed in our first attempt at
making it faster than the current CPU implementation. Fortunately, newer
GPU architectures, such as Intel Larrabee and NVIDIA Fermi, feature mul-
tiple instruction and multiple data stream (MIMD) processing, which should
allow easier and more efficient implementation of parallel tasks.
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Figure 6.1: Screenshot of the main window of ProCamCalib, where all the
settings can be adjusted. They are currently configured for calibrating two
cameras and one projector.

The limited reflectance model represents another problem. To work
around it, once the algorithm has been sufficiently accelerated, the surface
may be divided in pieces each supporting a different gain and ambient light,
as demonstrated by Silveira and Malis [31] for camera-only systems. Such
an approach could even allow specularities.

Apart from these limitations, the algorithm can also be enhanced to sup-
port mostly planar 2.5D surfaces as well as piecewise planar objects by align-
ing multiple planes simultaneously, a widely adopted approach, as imple-
mented by Sugimoto and Okutomi [33] for example. Further, a user may
want to write new information on the surface. In that case, the system
would need a way to gradually update the new reflectance properties.

Although much future work remains, we have demonstrated, at the very
least, the feasibility of the approach. With some optimizations, we consider
that, for future applications using projector-camera systems, direct alignment
could become the basis of spatial augmented reality. Further, to encourage
future research in this direction, we are making the whole software system
available as open source on our Web site at
http://www.ok.ctrl.titech.ac.jp/~saudet/procamtracker/ .
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