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ABSTRACT
A division-of-focal-plane (DoFP) polarimeter enables us

to acquire images with multiple polarization orientations in
one shot and thus it is valuable for many applications us-
ing polarimetric information. The image processing pipeline
for a DoFP polarimeter entails two crucial tasks: denoising
and demosaicking. While polarization demosaicking for a
noise-free case has increasingly been studied, the research
for the joint task of polarization denoising and demosaick-
ing is scarce due to the lack of a suitable evaluation dataset
and a solid baseline method. In this paper, we propose a
novel dataset and method for polarization denoising and de-
mosaicking. Our dataset contains 40 real-world scenes and
three noise-level conditions, consisting of pairs of noisy mo-
saic inputs and noise-free full images. Our method takes
a denoising-then-demosaicking approach based on well-
accepted signal processing components to offer a repro-
ducible method. Experimental results demonstrate that our
method exhibits higher image reconstruction performance
than other alternative methods, offering a solid baseline.

Index Terms— Division-of-focal-plane polarimeter, po-
larization filter array, denoising, demosaicking, dataset

1. INTRODUCTION

Polarization is one of the physical properties of the light de-
scribing the strength and orientation of the oscillations of an
electromagnetic wave [1]. It has been shown that polarization
information is useful for many imaging and vision applica-
tions, such as specularity removal [2], reflection removal [3],
and 3D reconstruction [4].

Two representative methods for acquiring polarization
images are division-of-time (DoT) and division-of-focal-
plane (DoFP) methods. The DoT method places a polarizer
in front of a camera and sequentially rotates it to obtain a
set of images with different polarizer angles [5]. The DoFP
method equips a polarization filter array (PFA) on an image
sensor, which consists of a mosaic pattern of the pixels with
different polarizer angles [6]. Typical examples of Sony’s
monochrome and color patterns are shown in Figs. 1 and 2,
respectively. While the DoT method is not suitable for dy-
namic scenes because of the necessity of multiple shots, the
DoFP method applies to dynamic scenes owing to its one-shot
nature of image acquisition.

The image processing pipeline for a DoFP sensor entails
two crucial tasks for high-quality image reconstruction: de-
noising and demosaicking. Polarization demosaicking is the
task of interpolating missing pixel values from raw mosaic
PFA data. It has been actively studied in recent years, such as
interpolation-based [7–9], reconstruction-based [10–12], and
deep-learning-based [13–15] methods, induced by the fabri-
cations of Sony’s color and monochrome polarization sen-
sors [6]. The datasets provided in [9, 10] are now becoming
standard evaluation platforms. However, these methods and
datasets are developed for the demosaicking of noise-free in-
puts, without explicitly considering denoising.

The joint task of polarization denoising and demosaicking
has also been addressed in some recent studies [16–22]. How-
ever, there is no consensus on the evaluation platform because
there is no publicly available dataset and method for this joint
task, to our knowledge. With this in mind, we aim to offer a
novel dataset and baseline method for polarization denoising
and demosaicking. Our main contributions are as follows.

• We propose a novel real-world dataset containing 40
scenes and three noise-level conditions, consisting of
pairs of noisy mosaic inputs and noise-free full ground-
truth images as a new evaluation platform.

• We propose a new denoising-then-demosaicking method
based on well-accepted signal processing techniques,
offering a reproducible and solid baseline method.

• We experimentally demonstrate that our proposed
method achieves higher performance than other al-
ternative methods1.

2. RELATED WORK

2.1. Polarization Demosaicking

Existing polarization demosaicking methods are roughly clas-
sified into three categories: interpolation-based, reconstruction-
based, and deep-learning-based methods. In this section, we
briefly review existing methods by focusing on recent ones
and refer to a survey paper [23] for earlier methods.

Interpolation-based methods derive a full polarization im-
age by interpolating missing pixel values in raw mosaic data.
Advanced methods adapt well-accepted color demosaicking

1Our dataset and source code are available: http://www.ok.sc.e.
titech.ac.jp/res/PolarDem/main.html

http://www.ok.sc.e.titech.ac.jp/res/PolarDem/main.html
http://www.ok.sc.e.titech.ac.jp/res/PolarDem/main.html
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Fig. 1: The overall flow of our proposed method for MPFA

techniques to polarization demosaicking, such as the exploita-
tions of inter-channel correlations [7, 8] and residual interpo-
lation [9]. Reconstruction-based methods formulate polar-
ization demosaicking as a linear inverse problem [10] or a
sparse reconstruction problem [11, 12] and solve it using an
optimization technique. Deep-learning-based methods learn
a network that maps the raw mosaic data to a full polariza-
tion image in the intensity [13, 14] or Stokes-vector [15] do-
main. While some of these methods include smoothing func-
tionality, such as the incorporation of guided filtering [7] and
smoothness reqularization [10], all of the above methods do
not consider denoising explicitly.

Regarding the evaluation for polarization demosaicking,
the datasets provided in [9, 10] are gaining popularity and
becoming the standards for evaluation platforms. However,
these datasets only provide noise-free inputs and thus non-
realistic synthetic noise needs to be added when applied to
the evaluation for polarization denoising and demosaicking.

2.2. Polarization Denoising and Demosaicking

Some methods address the task of polarization denoising and
demosaicking. Three approaches can be considered for this
task: (i) demosaicking-then-denoisng, (ii) denoising-then-
demosaicking, and (iii) joint reconstruction approaches.

The interpolation-based method of [16] takes the first ap-
proach and adopts BM3D denoising [24] to the demosaicked
images in Stokes-vector domain. The other interpolation-
based methods [17, 18] take the second approach and apply
BM3D or a combined BM3D and K-SVD [25] directly to the
raw mosaic data before demosaicking. The deep-learning-
based methods of [20, 21] address the task of denoising and
demosaicking by learning image reconstruction networks us-
ing training images. Although this data-driven manner can
be considered as a joint approach, both methods start from
initial denoising, leaning toward the denoising-first approach.
Recently, a joint method based on wavelet-based Bayesian
estimation is also proposed [22]. Although these methods
demonstrate their effectiveness in each paper using synthetic
noise or own real data, their source codes and datasets are
not publicly available. This motivates us to construct a pub-
licly available real-world dataset and an open-source baseline
method for fostering future research.

3. PROPOSED METHOD

3.1. Monochrome PFA

Figure 1 shows the overview of our method for a monochrome
PFA (MPFA) with Sony’s sensor pattern [6]. Our method
takes a denoising-then-demosaicking approach based on the
effective utilization of well-accepted signal-processing-based
denoising and demosaicking methods, offering an easy-to-
follow and reproducible method as a solid baseline.

For the denoising stage, we utilize a pseudo four-channel
denoising (PFCD) method of [26]. PFCD was originally
developed for the Bayer color pattern [27] and applies the
denoising to the pseudo four channels of (IR, IG, IG, IB).
To exploit PFCD to the MPFA, the pseudo four-channel
images of (I0, I45, I90, I135) are firstly generated from the
raw MPFA data by sub-sampling and re-sampling (denoted
as ↓2 in Fig. 1). Then, BM3D denoising [24] is applied in
a principal component analysis (PCA) transformed domain
to exploit inter-channel correlations. Specifically, the four-
channel pixel values are transformed as [P1, P2, P3, P4]

T =
A[I0, I45, I90, I135]

T , where A is a 4×4 matrix represent-
ing the PCA transform and Pi is the value of i-th principal
component. Accordingly, the noise variances of each channel
are derived as [σ2
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T ,
where A′ is a matrix whose element is the squared of the
corresponding element in A. After this PCA transformation,
BM3D denoising is applied in a channel-by-channel manner
using the pair of (Pi, σi) for i-th component. Then, the de-
noised principal component images are inversely transformed
into the four-channel polarization images and rearranged to
the original pattern of the MPFA (denoted as ↑2 in Fig. 1).

For the demosaicking step, we apply intensity-guided
residual interpolation (IGRI-2) [9] to the denoised MPFA
data. IGRI-2 first generates an intensity image (S0), which
corresponds to the average of four polarization angle images,
from the MPFA data in an edge-aware directional manner.
Then, RI is performed in a channel-by-channel manner to
sub-sampled sparse data of each polarization angle using the
generated intensity image as a guide for guided interpola-
tion. By this interpolation process, denoised full polarization
images are obtained, from which polarimetric parameters,
such as the Stokes parameters (S0, S1, S2) and the angle and
degree of polarization (AoP and DoP ) can be obtained.



Noisy

2

The same process to 45 degrees 

Denoising
(PFCD)

Bayer
demosaicking

(RI)

The same process to 135 degrees 

Denoising
(PFCD)

Bayer
demosaicking

(RI)

2

Denoised

CPFA data
(Noisy)

Polarization
demosaicking

(IGRI-2)

Full 12-channel images

Three-channel 
MPFA data 
(Denoised)

Fig. 2: The overall flow of our proposed method for CPFA

3.2. Color PFA

Figure 2 shows the overall flow of our method for a color
PFA (CPFA) with Sony’s sensor pattern [6]. To extend our
denoising-then-demosaicking approach to the CPFA, we first
generate four Bayer-patterned images corresponding to four
polarization angles. Then, PFCD is applied to each Bayer-
patterned image, where the pseudo four channels are formed
as (Iθ,R, Iθ,G, Iθ,G, Iθ,B), where θ = {0, 45, 90, 135} repre-
sents the polarization angle. The demosaicking step is sep-
arated into two steps: Bayer color demosaicking and polar-
ization demosaicking. Bayer color demosaicking is first ap-
plied to the denoised Bayer-patterned images of each polar-
ization angle. Then, those color-demosaicked images are re-
arranged into three-channel MPFA data. Finally, polarization
demosaicking is applied to each MPFA data in a channel-by-
channel manner to derive the denoised full 12-channel polar-
ization images. In this paper, we adopt RI [28] for Bayer
demosaicking and IGRI-2 [9] for polarization demosaicking.

4. PROPOSED DATASET

We constructed a new polarization denoising and demosaick-
ing dataset containing 40 scenes as shown in Fig. 3. Our
dataset consists of pairs of ground-truth noise-free full po-
larization images and corresponding noisy raw mosaic im-
ages. The dataset includes three noise-level conditions (Low,
Medium, and High), as summarized in Table 1.

To capture images, we used a JAI CV-M9GE 3-CCD
RGB camera (1024×768 pixels, 10 bits) and placed a SIG-
MAKOKI SPF-50C-32 linear polarizer attached to a PH-50-
ARS rotating polarizer mount in front of the camera. We then
captured the images by rotating the polarizer at the angles of
0, 45, 90, and 135 degrees, resulting in full 12-channel data
consisting of three color channels and four polarizer angles.

To obtain noise-free full-color ground-truth images, we
captured 1,000 noisy RGB images for each capturing at each
polarizer angle. Among these 1,000 images, we excluded 100
images to discount potential outliers (e.g., caused by unex-
pected capturing errors and instability of the capturing). We
averaged the rest 900 images to create a ground-truth image

Fig. 3: 40 scenes in our dataset

Table 1: Three noise-level conditions in our dataset

Noise
condition

Gain Shutter
speed

Average noise level
Analog Digital σR σG σB

Low 0 dB ×2.14 1/30 s 2.12 1.75 3.27
Medium 12 dB ×1.90 1/120 s 5.16 4.29 9.08

High 12 dB ×3.67 1/250 s 8.62 7.31 15.79

that is noise-free approximately. For this process, we calcu-
lated the average intensity µk (k = 1, 2, 3, ..., 1000), which
is the average pixel value of all color channels and all pixels,
for every 1,000 images. Then, we sorted the averaged intensi-
ties µk in ascending and searched the median of them, which
is denoted as µmed. Then, we calculated the differences from
the median as |µk − µmed| and excluded 100 images with the
largest differences from the median as possible outliers.

To obtain noisy raw mosaic images, we adopted using the
noisy RGB images corresponding to the median (µθ

med, θ =
{0, 45, 90, 135}) among the 900 images for each polarization
angle. We arranged those images to the mosaic image ac-
cording to the CPFA pattern in Fig. 2. For the monochrome
dataset, we used the green channel and constructed the mosaic
image according to the MPFA pattern in Fig. 1.

The three noise-level conditions in Table 1 were adjusted
by the combination of the analog gain and the shutter speed.
We further applied a digital gain to make the resultant images
bright enough for visualization. To determine the digital gains
for each condition, we constructed the histogram of all pixel
values in 40 scenes and applied the percentile threshold of



Table 2: Quantitative comparison for MPFA on the high noise-level condition (σG = 7.31)

Method PSNR ↑ Angle error ↓
I0 I45 I90 I135 S0 S1 S2 DoP AoP

ICC [7] 32.07 31.89 32.06 31.81 34.94 36.95 36.50 23.74 43.95
IGRI-2 [9] 31.97 31.74 31.70 31.97 33.32 39.38 38.59 26.45 42.38
LPD [10] 31.98 31.80 31.96 31.82 37.31 33.53 33.31 20.46 41.86
ICC [7] → BM3D [24] 36.69 36.19 36.67 36.10 40.42 40.67 39.69 28.97 40.71
IGRI-2 [9] → BM3D [24] 37.41 36.70 36.68 37.37 40.36 41.96 40.61 30.13 39.72
LPD [10] → BM3D [24] 34.43 34.14 34.43 34.19 40.54 35.77 35.43 23.29 39.90
PFCD → IGRI-2 (Ours) 40.01 38.90 40.09 38.96 41.18 47.13 43.69 34.31 30.24
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Fig. 4: Visual comparison for MPFA on the high noise-level condition (Scene 14)

99%, meaning that 99% of the pixels are ensured unsaturated
after multiplying the digital gain. Finally, the noise levels for
each condition, polarizer angle, and color channel were cal-
culated by the standard deviation using the before-mentioned
900 noisy RGB images. In real-world data, the noise levels
are signal-dependent and vary for every pixel. In Table 1, we
provide the average noise levels for three conditions, where
the noise levels of all the pixels for all the polarization angles
are averaged after applying the digital gains. We observe that
the noise levels for the blue channel are relatively higher than
the other two channels. This is because of the lower camera
spectral sensitivity of the blue channel in the used camera. Ta-
ble 1 shows that our dataset effectively provides images with
low, medium, and high noise-level conditions. For simplicity,
we use the average noise levels in Table 1 for all the scenes
and the polarization angles for denoising in later experiments.

5. EXPERIMENTAL RESULTS

5.1. Monochrome Results

We first evaluate the results for MPFA. We compared three
approaches using publicly available source codes: (i) De-
mosaicking only; We applied two interpolation-based meth-
ods, ICC [7] and IGRI-2 [9], and one reconstruction-based
method, LPD [10]. (ii) Demosaicking-then-denoising; We
applied BM3D denoising [24] for the demosaicked im-

ages by each method above, where BM3D was applied in
a channel-by-channel manner for each polarization angle im-
age using the average noise level (σG) shown in Table 1.
(iii) Denoising-then-demosaicking; We applied our proposed
method using the average noise level (σG).

Table 2 represents the quantitative comparison on the high
noise-level condition, where the average root mean square er-
ror (RMSE) of the angle is evaluated for AoP images and the
peak signal-to-noise ratio (PSNR) is evaluated for the other
images including Stokes images (S0, S1, S2) and DoP im-
ages, as in [9]. From Table 2, we can see that our method
outperforms the other methods, especially for DoP and AoP.
Figure 4 shows the visual comparison, where our method gen-
erates the closest result to the ground truth (GT), as can be
confirmed in the AoP-DoP visualization.

5.2. Color Results

We next evaluate the results for CPFA. Similar to the evalua-
tion for MPFA above, we compared three approaches, where
we included the reconstruction-based method of JCPD [11]
designed for CPFA, instead of ICC [7] designed for MPFA.

Table 3 represents the quantitative comparison on the high
noise-level condition. The results show similar trends to the
monochrome case and demonstrate that our method outper-
forms the other methods in all evaluated categories. Figure 5
shows the visual comparison, where only our method can re-
produce the AoP-DoP of the leaf region in reasonable quality.



Table 3: Quantitative comparison for CPFA on the high noise-level condition (σR = 8.62, σG = 7.31, σB = 15.79)

Method CPSNR ↑ Angle error ↓
I0 I45 I90 I135 S0 S1 S2 DoP AoP

IGRI-2 [9] 28.75 28.59 28.71 28.57 31.13 34.22 33.82 20.96 45.55
LPD [10] 29.22 28.99 29.15 29.00 31.49 33.12 32.67 19.87 41.90
JCPD [11] 27.18 27.15 27.37 26.96 27.72 35.03 34.71 21.52 46.58
IGRI-2 [9] → BM3D [24] 31.52 31.26 31.48 31.25 34.92 35.86 35.29 23.42 44.49
LPD [10] → BM3D [24] 30.18 29.91 30.12 29.93 32.49 34.08 33.55 21.20 41.05
JCPD [11] → BM3D [24] 29.76 29.66 29.94 29.42 30.41 36.82 36.01 23.86 45.10
PFCD → IGRI-2 (Ours) 33.71 33.33 33.72 33.42 35.04 41.12 39.52 29.91 37.97

LPD JCPD

LPD → BM3D JCPD → BM3D PFCD → IGRI-2 (Ours)𝑆0 AoP-DoP

IGRI-2

IGRI-2 → BM3D

AoP-DoP Color

GT

Fig. 5: Visual comparison for CPFA on the high noise-level condition (Scene 39)

5.3. Comparison of Three Noise-Level Conditions

We next evaluate the results of three noise-level conditions.
Due to the page limit, we only show the quantitative com-
parison for MPFA with selected methods and evaluation cate-
gories in Table 4. We refer to the supplementary materials on
our website for more complete quantitative and visual results.

In Table 4, the results for the medium noise level show
similar trends to those for the high noise level, where our
method achieves the best performance for all the evaluated
categories. For the low noise level, IGRI-2→BM3D and
our method show comparable numerical performance, where
the best method depends on the evaluation category. This
indicates that, for the low noise level, the noise does not
much affect the performance of demosaicking, and conse-
quently, demosaicking-then-denoising and denoising-then-
demosaicking approaches reach similar performance. Even
in this case, our method convincingly shows better AoP-DoP
visualization results as shown in the supplementary materials.

6. CONCLUSION

In this paper, we have proposed a novel dataset and method
for polarization denoising and demosaicking. Our real-world
dataset includes a variety of 40 scenes and three noise levels,
offering a suitable evaluation platform. Our method effec-
tively utilizes well-accepted signal processing components,

Table 4: Quantitative comparison for MPFA on three
noise-level conditions

Noise
level Method PSNR ↑ Angle

error ↓

S0 DoP AoP

Low
IGRI-2 43.02 33.10 28.71
IGRI-2 → BM3D 45.10 33.69 25.92
Ours 44.92 33.75 21.42

Medium
IGRI-2 37.42 27.94 37.56
IGRI-2 → BM3D 42.54 30.73 34.48
Ours 42.71 32.63 26.19

High
IGRI-2 33.32 26.45 42.38
IGRI-2 → BM3D 40.36 30.13 39.72
Ours 41.18 34.31 30.24

offering a solid baseline method. Experimental results on
our dataset have demonstrated that our method achieves the
best performance both numerically and visually. Our future
work includes the consideration of signal-dependent noise for
real data and the expansion of data amount for deep-learning-
based approaches, which were out of scope in this study.
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