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Abstract—We propose a novel high dynamic range (HDR)
imaging algorithm for the scenes that contain an extremely wide
range of scene radiance. In the HDR imaging, several images
are taken under different exposures. Those images usually have
displacement from one another due to camera and/or object
motions. The challenge of the super HDR imaging is to align
those images because any image contains ”lost” regions where
texture information is completely lost due to overexposure or
underexposure. We propose an image alignment algorithm based
on similarities of region shapes instead of the similarities of
the textures. Experimental comparisons demonstrate that the
proposed algorithm outperforms state-of-the-art algorithms.

I. INTRODUCTION

A typical consumer’s digital camera has limited dynamic
range for luminance. One cannot simultaneously capture im-
ages with both extremely bright and extremely dark regions
with a single shot. Therefore, computational high dynamic
range (HDR) imaging has been studied. Classical HDR imag-
ing algorithms [1], [2], [3] first estimate a camera response
function with multiple images taken under different exposures.
Then, scene radiances are obtained from the pixel values
using the camera response function. For these processes, it is
assumed that the scene is static and that the images are taken
from a fixed viewpoint. However, if we apply the classical
HDR imaging algorithms to the dynamic scene or images taken
using a hand-held camera, the resultant HDR image suffers
from ghost artifacts.

To avoid the ghost artifacts, two kinds of methods are
adopted. The first is to build a specialized HDR camera system
that includes multiple cameras and beam splitters [4], [5]
so that images can be simultaneously taken under different
exposures without displacement. However, such systems are
bulky and expensive.

The second is to develop algorithms to reduce the ghost
artifacts using images with displacement. These algorithms are
further classifiable into two approaches. The first approach is
a weighting approach, which assigns lower weight to ghost
pixels or dynamic regions to reduce the ghost artifacts [6],
[7], [8], [9], where the weight is used to compose the HDR
image. Heo et al. [10] detected the dynamic region based on a
joint probability density function and a Gaussian weight. The
joint probability density function is estimated with similarities
based on textures. The second one is an optical-flow-based
approach [11], [12], [13], [14], [15], [16]. In this approach, a
reference image is first determined among different exposure
images. Then, the optical flow of each image with respect

to the reference image is estimated for aligning the images.
Similarities based on textures are used to estimate the optical
flow. Finally, the HDR image is composed with the aligned
images using a naive HDR composing algorithm.

These two approaches commonly depend on similarities
based on textures. In other words, texture information is
assumed to be obtainable from all different exposure images.
However, some textures are completely lost because of the
limited dynamic range for each image compared with the range
of the scene radiance. The existing algorithms that rely on
textures fail to align the images because there is no texture
information in some regions. Consequently, severe artifacts
appear in the composed HDR images, if the range of the scene
radiance becomes wide.

For such a scene with an extremely wide range of scene
radiance, we propose a novel HDR imaging algorithm, which
we call super HDR imaging. A key idea of the proposed
algorithm is to align images based on the shapes of segmented
regions instead of textures, so that we can align extremely
underexposed or overexposed regions. Then, we collect the
regions with appropriate exposures based on the alignment and
compose the HDR image. We apply our proposed HDR imag-
ing algorithm to actual scenes with an extremely wide range
of scene radiance. Experimental comparisons demonstrate that
the proposed algorithm outperforms existing state-of-the-art
algorithms.

II. CHALLENGES OF SUPER HDR IMAGING

To discuss challenges of the super HDR imaging, we
consider a one-dimensional image as shown in Fig. 1. Fig.
1(a) shows scene radiance where the horizontal and vertical
axes respectively represent position and radiance. This scene
includes textures at extremely bright and extremely dark
regions. If we take this scene under long exposure, then
the texture information in the dark region can be captured.
However, texture information in the extremely bright region is
lost because of saturation. On the contrary, in the image taken
under short exposure, the texture information in the bright
region can be retained without the saturation, but the texture
information in the dark region is blacked out or extremely
degraded by noise. In addition, displacement usually occurs
between images because of the camera and/or scene motion.
Schematics of those relations are shown in Fig. 1(b). Even
after adjusting pixel values to scene radiances, it is a chal-
lenging problem to align extremely dark or extremely bright
regions where the texture information is lost. As described in



Fig. 1. We consider a one-dimensional scene: (a) is the input scene radiance. If we take this scene under short exposure and long exposure, then (b) images
are captured. In addition, displacement usually occurs between images because of the camera or scene motion. Even if these images are converted to scene
radiance, they cannot be mutually aligned.

the previous section, existing de-ghosting algorithms depend
on similarities based on texture information. Therefore, the
existing de-ghosting algorithms cannot be applied to such a
scene with regions where texture information is completely
lost.

As described in details in the following sections, we
propose an algorithm to align those regions based on the
segmented region shapes. Fig. 2 shows an overview of the
proposed algorithm. First, we perform segmentation based on
the luminance for each exposure image. Then, we align images
by comparing the shape of the segmented region to that in
the reference image. For the alignment, we also use texture
information where possible. Once alignment is done for all
regions, we can compose the HDR image using the naive
composing algorithm.

III. PROPOSED ALGORITHM

In the proposed algorithm, each exposure image is seg-
mented based on luminance into three regions: saturated, ap-
propriate, and blacked-out. We refer this segmentation process
to trinarization. The main idea of the proposed algorithm is to
compose the HDR image by collecting the appropriate regions
from all exposure images.

Let {I1, I2, · · · , IN} be images taken under different ex-
posures, where images are sorted in descending order of

exposure. The proposed algorithm consists of three steps:
trinarization, region alignment, and merging.

A. Trinarization by luminance

The camera response function is assumed to be known,
so pixel values of images with different exposure can be
converted to scene radiance. We explain how the saturated,
the appropriate, and the blacked-out ranges are determined.
The observable maximum scene radiance, Zmax, is defined by
the scene radiance corresponding to the maximum value of
the image intensity. This observable maximum scene radiance
depends on the exposure. We define the saturated range of
each exposure by the range τZmax to Zmax, where τ = 0.90
is used for our experiments. To define the appropriate and the
blacked-out ranges, we consider two different exposures as
shown in Fig. 3: short and long exposures. Let Zs

max and Zl
max

respectively denote the observable maximum scene radiance of
the short and long exposures. The ratio of the short exposure to
the long exposure is known and denoted by r. We set the lower
limit of the appropriate range for the short exposure as τrZs

max,
so that it corresponds to the upper limit of the appropriate
range for the long exposure, τZl

max. Consequently, the range
from τrZs

max to τZs
max is defined as the appropriate range. And

the range below the appropriate range is defined as blacked-
out range, in which pixels should be replaced with those of
the long exposure in the following steps. These definitions are



Fig. 2. Here, (a), (b), and (c) are overviews of our algorithm. (a) All input images are trinarized by luminance into three regions: saturated, appropriate, and
blacked-out. Then, the image with the largest area of the appropriate region is defined as the reference image. (b) Images are aligned based on the shapes of
segmented regions. (c) The HDR image is composed by merging aligned images.

applied for any two consecutive exposures. In the proposed
algorithm, each exposure image is trinarized based on the
above definition for each range and spacial smoothness for
the segments. We use the Graph-Cut optimization algorithm
[17] for this trinarization.

B. Alignment based on the shapes of segmented regions

For the image alignment, we first select a reference image.
The image with the largest area of the appropriate region
is selected as the reference image R. Now, we consider
replacing the blacked-out regions of the reference image with
the appropriate regions of the longer exposure images. Here,
we consider that the image Ik is selected as the reference
image. Then, the next long exposure image Ik−1 is the first
source image. Thanks to the trinarization described in the
previous section, the blacked-out region of the reference image
can be expected to be associated with a combined region
of appropriate and blacked-out regions of the source image.
Therefore, we replace the blacked-out regions of the reference
image with the appropriate and blacked-out regions of the
source image, by aligning each region based on the shape of
the segmented regions. The reference image updated by this
replacement may still have blacked-out regions in the source
image. Then, the same process should be applied using Ik−2

as the source image.

We repeat these processes until all longer exposure images
are merged. In the same manner, we replace the saturated
regions of the reference image by the appropriate and saturated
regions of next short exposure image Ik+1 as the source image.
This process is also repeated until all shorter exposure images
are merged.

Now, we describe our alignment method based on the

shapes of the segmented regions. We first convert the refer-
ence and source trinarized images to binary images. For the
reference image, the appropriate regions are set as 1 and the
blacked-out and the saturated regions are set as 0. For longer
exposure source images, the appropriate and the blacked-out
regions are set as 0 and the saturated regions are set as 1.
For a shorter exposure source image, the appropriate and the
saturated regions are set as 0 and the blacked-out regions are
set as 1. These conversions enable us to compare the shapes
of the regions as a jigsaw puzzle. Then, the alignment can be
conducted by minimizing the cost function as

Eshape(p) =
1

|Ω′|
∑
x∈Ω′

R̃(x)⊕ S̃(x+p), (1)

where R̃ and S̃ are the binary image generated by binarizing
the trinary images of the reference image R and source image
S, x is the position of the pixel, p represents the displacement,
⊕ represents exclusive OR operator and Ω′ is the dilated
region of the current region of the reference image, Ω. We
set the two thresholds for the trinarization as shown in Fig. 3,
so that the blacked-out region of the short exposure image
corresponds to the appropriate and the blacked-out regions
of the long exposure image and that the saturated region of
the long exposure image corresponds to the appropriate and
the saturated regions of the short exposure image. Therefore,
we convert the trinarized images to binarized images. If the
texture information remains there, then we add the similarity
cost based on the texture information as

EΩ(p) = Eshape(p) + αEtexture(p). (2)

Therein, Etexture(p) is weighted-SSD expressed as

Etexture(p) =
1

|Ω|
∑
x∈Ω

w(R(x))(Rsr(x)− Ssr(x + p))2, (3)



Fig. 3. τZmax is the threshold between saturated regions and appropriate
regions for each image. τrZmax is the threshold between appropriate regions
and blacked-out regions for each image. We trinarize all images based on
these thresholds.

where Rsr and Ssr are generated by converting R and S
to scene radiance. In addition, w(i) is a weight used as
a soft-threshold to down-weight underexposed and overex-
posed regions. In general, we can align regions sufficiently
by minimizing only Eshape. We use the texture information
as additional information. Although detailed comparisons are
presented in Section 4, the texture energy term does not affect
the results to any great degree. Consequently, difference p is
calculated for all reference regions Ω.

C. Merging

Once we align the images, we can simply apply the naive
HDR algorithm to compose the HDR image. In addition, we
apply a blending technique over boundaries to alleviate the
brightness change if the correct camera response function is
not obtained.

IV. EXPERIMENTAL RESULTS

For the evaluation, we take images at different viewpoints
under different exposures. First, we compose the HDR images
with alignments based on the three different cost functions:
texture only, shape only, and texture and shape. The cost
function of texture only corresponds to the existing optical
flow approach. Fig. 4 presents results of each cost function.
The left is the result obtained by minimizing only Etexture in
eq. (2). As described in section II, it is difficult to use texture
similarity when a reference image has an overexposed or an
underexposed part. Misalignments of the saturated regions
cause artifacts as shown in Fig. 4(a). Fig. 4(b) and 4(c) show
similar results, where α is 0 and 1.5 × 10−5 in eq. (2). The
shape cost function mainly contributes to the alignment.

We compare the result of our algorithm with state-of-the-
art algorithms. Input images are taken at different positions.
These camera positions are presented in Fig. 5. The distance

Fig. 5. Camera position. The distance between two adjacent cameras either
horizontally or vertically is 30 mm.

between two adjacent cameras aligned vertically or horizon-
tally is 30 mm. Fig. 6 presents input images that are taken at
different exposure times. The exposure times are 1 ms, 4 ms,
16 ms, 64 ms, 256 ms, and 1024 ms from the left image. Fig. 7
shows our results and those of existing algorithms. We applied
the photomatix [18] tone mapping for our proposed algorithm
and Sen’s algorithm [16], while Heo’s algorithm [10] includes
tone mapping in itself. Comparison of these results shows that
our algorithm can correctly reconstruct an overexposed region
of the reference image. Severe artifacts exist in those regions
in the results of other existing algorithms. Note that this scene
includes the characters of ”HDR” in the lighting (the brightest
region) and can be visible in our result. The exposure ratio of
this scene is more than one thousand. The proposed algorithm
can reconstruct those scenes with the super wide range of scene
radiance.

Fig. 9 shows another result. The input images are shown
in Fig. 8. Exposure times of input images are 4 ms, 16 ms, 64
ms, 256 ms, and 1024 ms from the left. Our resultant HDR
image appears good for the entire image regions including the
most brightest part, where the characters on the label of the
whiskey bottle can be visible.

V. CONCLUSIONS

We have proposed a novel algorithm to produce the HDR
image with images taken of the scene including an extremely
wide range of intensity levels under different exposures. As
shown in the experimental results, it is difficult for the existing
algorithms to produce the HDR image with those images
because all of those images include overexposed and/or un-
derexposed regions. At such regions, textures are completely
lost and the alignment based on the texture similarity dose not
work. In our proposed algorithm, each image is segmented
by luminance so that the segmented regions fit to the corre-
sponding regions in the other images. By aligning the regions
based on their shapes, even the regions in which the texture is
completely lost can be aligned. Consequently, our algorithm
can produce the super HDR image for the scene with an
extremely wide range of scene radiance.
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HDR image reconstruction and denoising for dynamic scenes,” in IEEE
International Conference on Computational Photography, 2013, pp. 31–
41.

[14] J. Hu, O. Gallo, K. Pulli, and X. Sun, “Hdr deghosting: How to deal
with saturation ?” in CVPR, 2013.

[15] M. Gupta, D. Iso, and S. Nayar, “Fibonacci Exposure Bracketing for
High Dynamic Range Imaging,” in IEEE International Conference on
Computer Vision (ICCV), Dec 2013, pp. 1–8.

[16] P. Sen, N. K. Kalantari, M. Yaesoubi, S. Darabi, D. B. Goldman, and
E. Shechtman, “Robust Patch-Based HDR Reconstruction of Dynamic
Scenes,” ACM Transactions on Graphics (TOG) (Proceedings of SIG-
GRAPH Asia 2012), vol. 31, no. 6, pp. 203:1–203:11, 2012.

[17] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy min-
imization via graph cuts,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 23, no. 11, pp. 1222–1239, 2001.

[18] “Photomatix pro 2012, commercially-available hdr processing
software.” [Online]. Available: http://www.hdrsoft.com/.


