Single Image Deraining Network with Rain **Embedding Consistency and Layered LSTM** WACV2022 Supplementary Materials **Tokyo Institute of Technology** Yizhou Li, Yusuke Monno, Masatoshi Okutomi

Experimental results on SPA-Data • Dataset: SPA-Data [8] (real-world)

Method

PSNR

SSIM

• Training pairs: 638492

• Testing pairs: 1000

The quantitative comparison on SPA-Data dataset (Red: the best result; Blue: the second best result).

S	SPANet [8]	RCDNet [6]	ECNet (ours)	ECNet+LL (ours)
	40.04	41.05	43.62	44.32
	0.984	0.985	0.990	0.991

Note: PSNR/SSIM are calculated on Y channel

Input

Groundtruth

SPANet

RCDNet

ECNet (ours)

Input

Groundtruth

SPANet

RCDNet

Input

Groundtruth

SPANet

RCDNet

Input

Groundtruth

SPANet

RCDNet

ECNet (ours)

Input

Groundtruth

SPANet

ECNet (ours)

Input

Groundtruth

SPANet

RCDNet

ECNet (ours)

Input

Groundtruth

SPANet

ECNet (ours)

Experimental results on Rain100H • Dataset: Rain100H [7]

Methods	SIRR [1]	RESCAN [2]	PReNet [3]	JORDER-E [4]	RCDNet [5]	BRN [6]	ECNet (ours)
PSNR	22.03	28.82	30.31	30.22	31.26	31.32	29.80
SSIM	0.714	0.867	0.910	0.898	0.912	0.924	0.903

• Training pairs: 1800

• Testing pairs: 100

The quantitative comparison on Rain100H dataset (Red: the best result; Blue: the second best result).

Note: PSNR/SSIM are calculated on Y channel

ECNet+LL (ours) 31.43 0.921

Qualitative comparison on Rain100H

Input

JORDER-E

Groundtruth

SIRR

RCDNet

PReNet

Qualitative comparison on Rain100H

Input

JORDER-E

Groundtruth SIRR

RCDNet

PReNet

Experimental results on Rain100L • Dataset: Rain100L [7]

Methods	SIRR [1]	RESCAN [2]	PReNet [3]	JORDER-E [4]	RCDNet [5]	BRN [6]	ECNe (ours
PSNR	32.31	38.09	37.21	39.36	39.76	38.16	38.2
SSIM	0.926	0.980	0.978	0.985	0.986	0.982	0.98

• Training pairs: 200 • Testing pairs: 100

The quantitative comparison on Rain100L dataset (Red: the best result; Blue: the second best result).

Note: PSNR/SSIM are calculated on Y channel

ECNet+LL et (ours) S) 39.66 0.986

Qualitative comparison on Rain100L

Input

JORDER-E

RCDNet

ECNet (ours)

Qualitative comparison on Rain100L

JORDER-E

RCDNet

BRN

ECNet (ours)

Experimental results on Rain200H • Dataset: Rain200H [7]

Methods	SIRR [2]	RESCAN [3]	PReNet [4]	JORDER-E [5]	RCDNet [6]	BRN [7]	ECNe (ours
PSNR	22.17	27.95	29.47	29.23	30.18	30.27	28.5
SSIM	0.726	0.862	0.907	0.894	0.909	0.919	0.89

• Training pairs: 1800 (Models trained on Rain100H are used) • Testing pairs: 200

The quantitative comparison on Rain200H dataset (Red: the best result; Blue: the second best result).

Note: PSNR/SSIM are calculated on Y channel

Qualitative comparison on Rain200H

Input

JORDER-E

Groundtruth

SIRR

RCDNet

PReNet

Qualitative comparison on Rain200H

Input

JORDER-E

Groundtruth SIRR

RESCAN

PReNet

Experimental results on Rain200L • Dataset: Rain200L [7]

Methods	SIRR [2]	RESCAN [3]	PReNet [4]	JORDER-E [5]	RCDNet [6]	BRN [7]	ECNe (ours
PSNR	32.21	38.43	37.93	39.13	39.49	38.86	38.3
SSIM	0.931	0.982	0.983	0.985	0.986	0.985	0.98

• Training pairs: 1800 • Testing pairs: 200

The quantitative comparison on Rain200L dataset (Red: the best result; Blue: the second best result).

Note: PSNR/SSIM are calculated on Y channel

Qualitative comparison on Rain200L

Input

Groundtruth SIRR

RCDNet

PReNet

Qualitative comparison on Rain200L

Input

JORDER-E

Groundtruth SIRR

RCDNet

RESCAN

PReNet

Experimental results on Rain800

• Dataset: Rain800 [9]

Methods	SIRR [2]	RESCAN [3]	PReNet [4]	JORDER-E [5]	RCDNet [6]	BRN [7]	ECNe (ours
PSNR	22.73	28.36	26.82	27.92	28.66	28.31	28.8
SSIM	0.762	0.872	0.888	0.883	0.893	0.986	0.90

• Training pairs: 700 • Testing pairs: 100

The quantitative comparison on Rain800 dataset (Red: the best result; Blue: the second best result).

Note: PSNR/SSIM are calculated on Y channel

Qualitative comparison on Rain800

JORDER-E

RCDNet

BRN

ECNet (ours)

Qualitative comparison on Rain800

Input

JORDER-E

SIRR

RCDNet

BRN

RESCAN

PReNet

[1] Wei Wei, Deyu Meng, Qian Zhao, Zongben Xu, and Ying Wu. Semi-supervised transfer learning for image rain removal. In Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages 3877–3886, 2019.

[2] Xia Li, JianlongWu, Zhouchen Lin, Hong Liu, and Hongbin Zha. Recurrent squeeze-and-excitation context aggregation net for single image deraining. In Proc. of European Conf. on Computer Vision (ECCV), pages 254–269, 2018.

[3] Dongwei Ren, Wangmeng Zuo, Qinghua Hu, Pengfei Zhu, and Deyu Meng. Progressive image deraining networks: A better and simpler baseline. In Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages 3937–3946, 2019.

[4] Wenhan Yang, Robby T Tan, Jiashi Feng, Zongming Guo, Shuicheng Yan, and Jiaying Liu. Joint rain detection and removal from a single image with contextualized deep networks. IEEE Trans. on Pattern Analysis and Machine Intelligence, 42(6):1377–1393, 2019.

[5] Hong Wang, Qi Xie, Qian Zhao, and Deyu Meng. A model-driven deep neural network for single image rain removal. In Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages 3103–3112, 2020.

[6] Dongwei Ren, Wei Shang, Pengfei Zhu, Qinghua Hu, Deyu Meng, and Wangmeng Zuo. Single image deraining using bilateral recurrent network. IEEE Trans. on Image Processing, 29:6852–6863, 2020.

[7] Wenhan Yang, Robby T Tan, Jiashi Feng, Jiaying Liu, Zongming Guo, and Shuicheng Yan. Deep joint rain detection and removal from a single image. In Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages 1357–1366, 2017.

[8] Tianyu Wang, Xin Yang, Ke Xu, Shaozhe Chen, Qiang Zhang, and Rynson WH Lau. Spatial attentive single-image deraining with a high quality real rain dataset. In Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages 12270–12279, 2019.

[9] Zhang, He, Vishwanath Sindagi, and Vishal M. Patel. "Image de-raining using a conditional generative adversarial network." IEEE transactions on circuits and systems for video technology 30.11 (2019): 3943-3956.

References