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Abstract— In this paper, we propose a novel video-based
remote heart rate (HR) estimation method based on 3D facial
landmarks. The key contributions in our method are twofold:
(i) We introduce 3D facial landmarks detection to the video-
based HR estimation and (ii) we propose a novel face patch
visibility check manner based on the face patch normal in
the 3D space. We experimentally demonstrate that, compared
with baseline methods using 2D facial landmarks, our proposed
method using 3D facial landmarks improves the robustness of
HR estimation to head rotations and partial face occlusion.
We also demonstrate that our visibility check is effective for
selecting sufficiently visible face patches, contributing to the
improvement of HR estimation accuracy.

I. INTRODUCTION

Video-based heart rate (HR) estimation has attracted in-
creasing attention for its non-contact manner, which enables
various remote vital sensing applications such as neonate
monitoring [1] and telemedicine [2]. The video-based HR
estimation is based on the principles of photoplethysmogra-
phy (PPG) and attempts to extract subtle temporal skin color
change due to blood volume pulse (BVP) under the skin [3],
[4]. Face is most commonly used as region of interest (ROI)
for video-based HR estimation methods because facial skin
is usually exposed. Thus, robustly detecting and tracking the
face ROI is of great importance for the video-based methods
to accurately estimate HR.

Initial video-based HR estimation methods apply face
detection and determine the ROI at the first video frame [5].
Since the ROI is not tracked between successive frames,
these initial methods are susceptible to head movements.
To improve the robustness, many methods apply 2D facial
landmarks detection to track the ROI between frames [6].
Furthermore, some methods divide the face ROI into face
patches using the 2D landmarks and locally select suitable
patches based on the reliability for each patch [7]–[10].

While 2D facial landmarks detection algorithms are robust
to head translations, they are relatively weak to head rotations
due to partial face occlusion (see Fig. 1(a)). In contrast, the
recent progress of computer vision technology has witnessed
that 3D facial landmarks detection algorithms [11], which
predict facial landmarks in the 3D coordinate (i.e., 2D image
coordinate (x,y) and 1D depth coordinate z), are very robust
to head rotations (see Fig. 1(b)). However, to the best of our
knowledge, none of the existing studies have investigated the
application of 3D facial landmarks detection to the video-
based HR estimation.

Y. Maki, Y. Monno, M. Tanaka, and M. Okutomi are with the
Department of Systems and Control Engineering, School of Engi-
neering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550,
Japan (e-mail: ymaki@ok.sc.e.titech.ac.jp; ymonno@ok.sc.e.titech.ac.jp;
mtanaka@sc.e.titech.ac.jp; mxo@sc.e.titech.ac.jp).

(a) 2D facial landmarks detection results

(b) 3D facial landmarks detection results

(c) Our visibility check results using the 3D landmarks

Fig. 1. Comparison of (a) 2D facial landmarks detection [12] and (b) 3D
facial landmarks detection [13]. The 2D landmarks detection inaccurately
estimates or completely misses the landmarks if the head rotation angle is
large, while the 3D landmarks detection is much robust to the head rotations.
(c) Our visibility check results using the 3D landmarks, where red patches
are regarded as visible.

In this paper, we propose a novel video-based HR esti-
mation method based on a new face patch visibility check
manner using 3D facial landmarks. In our method, we first
detect 3D facial landmarks and divide the face cheek regions
into face patches using the 3D landmark positions. We then
evaluate the visibility of each patch based on the patch
normal, where the patch is considered as visible if the angle
between the patch normal and the z-axis (corresponding to
the depth direction) is less than a threshold (see Fig. 1(c) for
example visibility check results). We introduce the visibility
check to disregard the reversed patches (e.g., blue patches
in the left and right edge pictures of Fig. 1(c)) and to
select the patches parallel to the image plane (according
to the threshold), which are expected as more reliable. We
finally estimate HR using only the patches that are visible
during the whole considered time window. To the best of our
knowledge, our method is the first method that incorporates
the 3D facial landmark detection and applies the face patch
visibility check using the 3D information. We experimentally
demonstrate that our proposed method improves the accuracy
and the robustness of HR estimation compared with baseline
methods using 2D facial landmarks detection.

II. PROPOSED METHOD

In this section, we explain our proposed HR estimation
method based on the 3D facial landmarks detection and the
face patch visibility check using the patch normal.



(a) Detected 3D landmarks (b) Generated face patches (c) Calculated patch normals (d) Visibility check results

Fig. 2. Step-by-step results of our visibility check algorithm: (a) Detected 3D facial landmarks, (b) generated face patches for the left and right cheek
regions, (c) calculated normals for each patch, and (d) visibility check results, where red patches are regarded as visible, i.e., the angle between the patch
normal and the z-axis is less than the threshold (75 degrees in this case).

A. 3D facial landmarks detection

We first detect 3D facial landmarks using the method
in [13]. As shown in Fig. 2(a), for each video frame, this
method detects a set of 68 landmarks in the 3D coordinate
(x,y,z), where (x,y) corresponds to the 2D image coordinate
and z corresponds to the 1D depth coordinate. We experi-
mentally found that the landmark positions detected by the
method [13] fluctuate between successive frames, even if
the head movement between the frames is small. This is
because this method does not use any temporal information.
To temporally stabilize each landmark position, we perform
temporal smoothing as

L̃t(x,y,z) =
∑

t+N
t=t−N Lt(x,y,z)

2N +1
, (1)

where Lt(x,y,z) is the landmark position of t-th frame,
L̃t(x,y,z) is the smoothed landmark position, and N is the
range of adjacent frames used for the smoothing (N = 3 is
used for our experiments).

B. Face patch generation

We next generate local face patches in the 3D space. As
shown by the bold gray lines in Fig. 2(b), we use the left
and the right cheek regions, where each region is defined by
the seven landmarks. We divide each cheek region into 3D
patches by the 4×4 uniform grid, as shown by the thin gray
lines in Fig. 2(b). A total of 32 patches are generated from
both cheek regions.

C. Face patch visibility check

We then check the visibility of each patch. To evaluate the
visibility, we calculate the angle between the patch normal
and the z-axis as

α = arccos(~np ·~nz), (2)

where ~np is the normalized vector representing the patch
normal, which is shown by a black arrow in Fig. 2(c),
~nz is the normalized vector corresponding to the z-axis, i.e.,
~nz = [0,0,−1]T , and α is the angle between the two vectors.
We regard that the patch is visible if the angle α is less
than a threshold. Figure 2(d) shows the visibility check result
using the threshold value of 75 degrees, where red patches
represent visible patches. In Section III-C, we will investigate
the effect of the threshold value in more detail.

D. HR estimation

Based on the frame-by-frame face patch visibility check as
explained above, we estimate HR. We first derive the visible
patch set for a considered time window. If a patch is visible
at all video frames in the time window, that patch is included
to the visible patch set. By checking the visibility of all 32
patches, we obtain the visible patch set, which is used for
averaging pixel intensities in the next HR estimation process.

We then follow the widely applied HR estimation pipeline
by Poh et al. [5] to estimate HR. Firstly, for each frame, the
averaged R, G, and B values are calculated by averaging
each of R, G, and B values of all the pixels belonging
to the visible patch set. Then, the RGB channel temporal
intensity traces are derived by concatenating the averaged
values of all video frames. Independent component anal-
ysis (ICA) is then applied to the RGB intensity traces to
separate the BVP component and the other two components
considered as noise. The BVP component is then selected
among the three components of the ICA output based on
the frequency information, where the component that has
the most strong peak power within the range of heartbeat
frequency [0.7Hz, 4Hz] is selected as the BVP component.
Finally, HR is calculated using the most dominant frequency
of the selected BVP component.
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Fig. 3. Comparison of “2D Landmark + Tracking (Baseline)” and “3D
Landmark + Tracking + Visibility Check (Proposed).” The baseline method
fails to estimate HR in [0, 15] and [45, 60] (sec.) because of the failure of
landmark detection due to large head rotations, while our proposed method
achieves better estimation accuracy.

III. EXPERIMENTS

A. Evaluation procedure

We used public PURE dataset [14] and our demonstrative
data for evaluating our method. The duration of all used
videos is 60 seconds. From each video, we extracted 10-
seconds video clips by a sliding time window manner with
one-second intervals. As a result, a total of 50 clips was
obtained from each 60-seconds video. Then, we estimated
HR for every 10-seconds clip, where the timestamp of each
estimated HR was assigned to the center of the time window.
Ground-truth HR was derived from the contact PPG sensor
data in a continuous manner based on inter-beat intervals of
the detected peaks. The timestamp of each ground-truth HR
was assigned to the later peak timestamp. Then, the ground-
truth HR series were linearly interpolated to re-sample to the
timestamp of each video-based estimated HR for evaluation.

We compared four methods. The first two methods use 2D
facial landmarks with or without ROI tracking. In the case
without tracking, the ROI pixels are determined at the first
frame and fixed during all frames. In the case with tracking,
the ROI is tracked using relative 2D landmark positions. The
third method applies 3D facial landmarks tracking but does
not apply our proposed visibility check. The last one is our
proposed method using 3D facial landmarks tracking with
visibility check. For fairly comparing all methods, we used
the same left and right cheek ROIs, which were determined
using the same 2D or 3D landmark indexes, and also applied
the same HR estimation pipeline. For the 2D landmarks de-
tection, we used the method of [12] implementation by [15].

B. 2D vs. 3D facial landmarks detection

We first show the effectiveness of applying the 3D facial
landmarks detection using one demonstrative video that con-
tains very large head rotations. Figure 1 shows five example
video frames, where, from left to right, the face angles are
referred to as (−90, −45, 0, +45, +90), respectively. During
the 60-seconds video, each face angle was kept as shown in
the top of Fig. 3.

(a) Small rotation (b) Medium rotation
Fig. 4. Example frames of PURE dataset [14] in the two situations.

60 65 70 75 80 85 90
Angle Threshold [degree]

0.7

0.75

0.8

0.85

0.9

Su
cc

es
s 

R
at

io
(A

bs
ol

ut
e 

E
rr

or
 o

f 
H

R
 <

 5
 [

bp
m

])

0

0.2

0.4

0.6

0.8

1

R
at

io
 o

f 
E

st
im

at
ed

 V
id

eo
 C

lip
s

Fig. 5. The effect of angle threshold values in our visibility check. The
orange line represents the ratio of estimated video clips among all 500 clips,
meaning that at least one face patch is included in the visible patch set and
HR can be estimated without the ICA error. The blue line represents the
success ratio of the estimated video clips. The result indicates that there is a
trade-off between the accuracy and the completeness of the HR estimation.

Figure 3 shows the comparison of our proposed method
with the angle threshold of 75 degrees and the baseline
method using 2D facial landmarks tracking. The baseline
method generates large estimation errors in [0, 15] (sec.) and
also cannot estimate HR in [45, 60] (sec.). This is because the
2D landmarks detection algorithm inaccurately estimates or
completely misses the landmarks for those sections, as shown
in Fig. 1(a). In contrast, our proposed method based on the
3D facial landmarks tracking achieves better robustness to
the large head rotations.

C. Effect of angle threshold values

We next investigate the effect of angle threshold values
used in our visibility check. For this purpose, we used
the most challenging “medium rotation” videos of PURE
dataset [14]. Each video consists of the frames with the
average face angle of 35 degrees, as shown in Fig. 4(b).
Since the 60-seconds videos of 10 subjects are provided, we
tested for extracted 500 10-seconds video clips.

Figure 5 shows the result using different angle threshold
values. The orange line represents the ratio of estimated
video clips, which mean that at least one face patch is
included in the visible patch set and HR can be estimated
without the ICA error. The result indicates that the stricter
threshold value we use, the higher the possibility we obtain
no visible patch. In contrast, the blue line represents the
success ratio (absolute HR estimation error is less than five
beat-per-minute (BPM)) of the estimated video clips. The
result indicates that the stricter threshold value tends to
make the precision better, which supports our expectation
that the face patches more parallel to the image plane are
more reliable. Given the results of Fig. 5, we can see the
trade-off between the accuracy and the completeness of HR
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Fig. 6. Quantitative evaluation on PURE dataset. The vertical axis represents the ratio of estimated 10-seconds video clips whose absolute HR estimation
error is less than the threshold of the horizontal axis. The results show that our proposed method achieves higher accuracy for the medium rotation situation,
demonstrating the improved robustness of our method to head rotations.

estimation. Considering the trade-off balance, we decided to
use the threshold value of 75 degrees in all experiments.

D. Comparison with other methods using PURE dataset
We next compare our method with other methods using the

“small rotation” and “medium rotation” situations of PURE
dataset (see Fig. 4). Each situation contains the 60-seconds
videos of 10 subjects and we used 500 10-seconds clips for
the evaluation. For both situations, 2D/3D facial landmarks
detection properly works because of no face occlusion.

Figure 6 shows the results for the two situations, where
the vertical axis represents the ratio of estimated 10-seconds
clips whose absolute HR estimation error is less than the
threshold of the horizontal axis. For the “small rotation”,
the accuracy of our method is comparable with the baseline
method because the ROIs of the two methods are almost
the same, i.e., almost all face patches are visible in this
situation. In contrast, for the “medium rotation”, our method
outperforms the baseline method. Besides, it is revealed that
only replacing the 2D landmarks with the 3D landmarks
does not always increase the accuracy. These results validate
the effectiveness of our visibility check using the face patch
normal information.

IV. CONCLUSION

In this paper, we have proposed a novel video-
based HR estimation method based on 3D facial land-
marks detection and face patch visibility check consider-
ing the 3D information. We have experimentally demon-
strated that our proposed method using the 3D land-
marks improves the robustness to head rotations and
outperforms the baseline method using 2D facial land-
marks detection. Our source code is publicly available at
http://www.ok.sc.e.titech.ac.jp/res/VitalSensing/3DfaceHR/

REFERENCES

[1] L. A. Aarts, V. Jeanne, J. P. Cleary, C. Lieber, J. S. Nelson, S. B.
Oetomo, and W. Verkruysse, “Non-contact heart rate monitoring
utilizing camera photoplethysmography in the neonatal intensive care
unit – A pilot study,” Early Human Development, vol. 89, no. 12, pp.
943–948, 2013.

[2] F. Zhao, M. Li, Y. Qian, and J. Z. Tsien, “Remote measurements of
heart and respiration rates for telemedicine,” PloS One, vol. 8, no. 10,
pp. e71 384–1–14, 2013.

[3] W. Wang, B. den Brinker, S. Stuijk, and G. de Haan, “Algorithmic
principles of remote-PPG,” IEEE Trans. on Biomedical Engineering,
vol. 64, no. 7, pp. 1479–1491, 2016.

[4] Y. Sun and N. Thakor, “Photoplethysmography revisited: From contact
to noncontact, from point to imaging,” IEEE Trans. on Biomedical
Engineering, vol. 63, no. 3, pp. 463–477, 2016.

[5] M. Z. Poh, D. McDuff, and R. W. Picard, “Advancements in non-
contact, multiparameter physiological measurements using a webcam,”
IEEE Trans. on Biomedical Engineering, vol. 58, no. 1, pp. 7–11,
2011.

[6] H. E. Tasli, A. Gudi, and M. den Uyl, “Remote PPG based vital sign
measurement using adaptive facial regions,” Proc. of IEEE Int. Conf.
on Image Processing (ICIP), pp. 1410–1414, 2014.

[7] M. Kumar, A. Veeraraghavan, and A. Sabharwal, “DistancePPG:
Robust non-contact vital signs monitoring using a camera,” Biomedical
Optics Express, vol. 6, no. 5, pp. 1565–1588, 2015.

[8] A. Lam and Y. Kuno, “Robust heart rate measurement from video
using select random patches,” Proc. of IEEE Int. Conf. on Computer
Vision (ICCV), pp. 3640–3648, 2015.

[9] S. Kado, Y. Monno, K. Moriwaki, K. Yoshizaki, M. Tanaka, and
M. Okutomi, “Remote heart rate measurement from RGB-NIR video
based on spatial and spectral face patch selection,” Proc. of Int. Conf.
of the IEEE Engineering in Medicine and Biology Society (EMBC),
pp. 5676–5680, 2018.

[10] Y. Maki, Y. Monno, K. Yoshizaki, M. Tanaka, and M. Okutomi, “Inter-
beat interval estimation from facial video based on reliability of BVP
signals,” Proc. of Int. Conf. of the IEEE Engineering in Medicine and
Biology Society (EMBC), pp. 6525–6528, 2019.

[11] J. Deng, A. Roussos, G. Chrysos, E. Ververas, I. Kotsia, J. Shen, and
S. Zafeiriou, “The menpo benchmark for multi-pose 2D and 3D facial
landmark localisation and tracking,” Int. Journal of Computer Vision,
vol. 127, no. 6-7, pp. 599–624, 2019.

[12] V. Kazemi and J. Sullivan, “One millisecond face alignment with an
ensemble of regression trees,” Proc. of IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), pp. 1867–1874, 2014.

[13] A. Bulat and G. Tzimiropoulos, “How far are we from solving the 2D
& 3D face alignment problem? (and a dataset of 230,000 3D facial
landmarks),” Proc. of IEEE Int. Conf. on Computer Vision (ICCV),
pp. 1021–1030, 2017.

[14] R. Stricker, S. Müller, and H.-M. Gross, “Non-contact video-based
pulse rate measurement on a mobile service robot,” Proc. of IEEE Int.
Symposium on Robot and Human Interactive Communication (RO-
MAN), pp. 1056–1062, 2014.

[15] Y. Nirkin, I. Masi, A. T. Trân, T. Hassner, and G. Medioni, “On face
segmentation, face swapping, and face perception,” Proc. of IEEE Int.
Conf. on Automatic Face and Gesture Recognition (FG), pp. 98–105,
2018.


