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Abstract—In this paper, we propose a novel heart rate (HR)
estimation method using simultaneously recorded RGB and
near-infrared (NIR) face videos. The key idea of our method is
to automatically select suitable face patches for HR estimation
in both spatial and spectral domains. The spatial and spectral
face patch selection enables us to robustly estimate HR under
various situations, including scenes under which existing RGB
camera-based methods fail to accurately estimate HR. For
a challenging scene in low light and with light fluctuations,
our method can successfully estimate HR for all 20 subjects
(£3 beats per minute), while the RGB camera-based methods
succeed only for 25% of the subjects.

I. INTRODUCTION

Heart rate (HR) or pulse rate is one of the most essential
vital signs, which provides the physiological and emotional
state of a person. HR is typically measured using a pho-
toplethysmographic (PPG) sensor attached to human skin.
The optical PPG sensor measures light reflected from or
transmitted through the skin. Since light intensity change
on the skin measured over time is caused by blood volume
change due to heartbeats, HR can be estimated from the PPG
signal [1], [2].

It has been shown that HR can be estimated remotely
using a digital camera [3], [4]. Similar to a PPG sensor,
a camera can be used as a device to measure light intensity
change on the skin. Therefore, HR can be estimated from a
skin video typically on a face or a hand. Non-contact HR
measurement from a video allows for various remote vital
sensing applications such as monitoring of neonates [5] and
prediction of daily health conditions [6].

Currently, most of camera-based HR estimation methods
use a conventional RGB camera (see [2], [7], [8] for a
review). However, RGB camera-based methods have a lim-
itation that it is difficult to accurately estimate HR under
low-light conditions or ambient light fluctuations. One way
to overcome this limitation is to use an invisible near-infrared
(NIR) light and an NIR camera. The feasibility of the NIR
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camera-based method has been evaluated in several recent
literatures [9], [10].

In this paper, to further improve robustness of camera-
based HR estimation, we propose a novel HR estimation
method using simultaneously recorded RGB and NIR face
videos. In what follows, we refer to a set of spatially aligned
RGB and NIR videos as an RGB-NIR video. The RGB-
NIR video can be captured using a prism-based dual-CCD
camera! or a single-sensor camera with an RGB-NIR filter
array [11], [12]. Different from existing camera-based meth-
ods, our method using an RGB-NIR video covers both visible
and NIR domains. This enables robust HR estimation under
various illumination conditions, under which existing RGB
or NIR camera-based methods fail to accurately estimate HR.
Contributions of this paper are summarized as follows.

« We propose a novel HR estimation method using an
RGB-NIR face video that is robust to various illumi-
nation conditions. To the best of our knowledge, our
method is the first method that effectively combines
RGB and NIR videos for remote HR measurement.

e We propose a novel HR estimation algorithm based on
the automatic selection of suitable face regions (patches)
both spatially and spectrally. Our algorithm enables
accurate HR estimation without relying on heuristic
selection of the face patches.

« We evaluate our method by experiments on 20 subjects
and demonstrate that our method can estimate HR more
robustly than existing methods.

II. RELATED WORKS

While many approaches have been proposed for RGB
camera-based HR estimation [13]-[27], we here focus on
two approaches; (i) the approach using multiple channels
within a single face region of interest (ROI) and (ii) the
approach using a single channel, typically the G channel,
within multiple face ROIs. Our method is built on the two
approaches. For other approaches, we refer to comprehensive
review papers [2], [7], [8].

As a representative method in the first approach, the Poh
et al. method extracts temporal RGB intensity traces of the
face, where each trace is calculated from averaged pixel
intensities within a single face ROI [13], [14]. Then, this
method employs independent component analysis (ICA) to
extract the PPG signal from the RGB traces. Then, Fourier
transform is applied to the extracted PPG signal to find the
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Fig. 1: Overall flow of our proposed HR estimation algorithm from an RGB-NIR faec video.

most dominant frequency that is assumed to be the frequency
of heartbeats. Some methods improved the Poh et al. method
based on a better selection of the face ROI and channel
combinations [15] or a machine learning approach [19].

As a method in the second approach, the Lam and Kuno’s
method randomly selects two local face ROIs (patches) and
extracts two temporal traces of the G channel intensity [23].
The two traces from the two face patches are used as
inputs of ICA to extract the PPG signal. Similar to the
Poh et al. method [13], [14], Fourier spectrum analysis of
the extracted PPG signal is performed to estimate HR. To
improve robustness to illumination variations at different
face patches, random patch selection and HR estimation
are repeatedly performed. The most reliable HR is finally
selected based on a constructed histogram of the estimated
HRs. Other methods have also been proposed to exploit
spatial redundancy for selecting suitable face ROIs [24]-[26].
In these methods, the G channel is typically used because the
G channel presents the strongest PPG amplitude [17], [28].

In our proposed method, we take a hybrid approach of
the above two approaches. Specifically, we effectively use
multiple (multispectral) channels and multiple face ROIs
extracted from an input RGB-NIR face video. Our method is
also different from existing non-RGB camera based methods
using an NIR camera [9], [10], a thermal camera [29], or a
multispecltral camera [30]-[32], in that our method covers
both visible and NIR domains and automatically selects
suitable face ROIs both spatially and spectrally.

III. PROPOSED HR ESTIMATION METHOD
A. Overview

Figure 1 shows the overall flow of our proposed HR
estimation algorithm from an RGB-NIR face video. Our
algorithm is inspired by the Lam and Kuno’s method [23]
that randomly and repeatedly selects two face patches in
the G channel (see G-G pair HR estimation in Fig. 1). The
random and repeated patch selection effectively improves the
robustness of HR estimation [23]. However, when using only
the G channel, it is still difficult to accurately estimate HR
under low-light conditions or ambient light fluctuations. This
is the common limitation of the RGB camera-based methods.

To overcome the limitation, our algorithm also selects
two face patches in the NIR channel (see N-N pair HR
estimation in Fig. 1). To further improve the robustness
and the versatility, our algorithm also combines the Poh
et al. approach [13], [14] and uses both the G and the
NIR channels? within a single face patch (see G-N pair
HR estimation in Fig. 1). From those sets of spatially and
spectrally selected patch pairs, our algorithm automatically
selects suitable patch pairs for HR estimation based on the
histogram fusion of reliably estimated HRs. Each processing
step is detailed below.

B. Face landmark detection and tracking
Our algorithm first detects and tracks the face in the three
videos, i.e., the G, the NIR, and the G+NIR videos. Here,

2 Although our algorithm is generally extensible for any channel combina-
tions, we here use only the G and the NIR channels because using the R and
the B channels does not show improved performance in our experiments.



we assume that input RGB and NIR videos are spatially
aligned. Thus, the G+NIR video is generated by the average
of the G and the NIR videos. We use the algorithm in [33]
(implemented in [34], [35]) to detect 66 face landmarks
(see Fig. 1(b)) and the algorithm in [23] to track the face
landmarks between image frames. If the landmarks cannot be
detected in a frame, the last detected landmarks in previous
frames are copied to the present frame.

C. Face patch selection and signal extraction

Our algorithm then extracts three pairs of temporal in-
tensity traces based on our proposed spatial and spectral
face patch selection (see Fig. 1(c) and 1(d)). We refer to
the three pairs as the G-G pair, the G-N pair, and the N-N
pair, respectively. For each pair, temporal intensity traces are
extracted as follows.

1) G-G pair: Two face patches are randomly selected in
the G channel. For these patches, the temporal traces
of the averaged G intensity are extracted.

2) G-N pair: One face patch is randomly selected in the
G+NIR channel. For this patch, the temporal traces of
the averaged G and NIR intensities are extracted.

3) N-N pair: Two face patches are randomly selected in
the NIR channel. For these patches, the temporal traces
of the averaged NIR intensity are extracted.

D. HR estimation with power spectral density calculation

Our algorithm then follows the algorithm in [23] to
estimate HR from each extracted pair of traces. First, moving
average filter is applied to extracted intensity traces to reduce
noise. Then, fast ICA [36] is performed to estimate the PPG
signal from the intensity traces. Then, detrending filter [37]
and moving average filter are applied to the estimated PPG
signal to remove trends and reduce noise. Then, Welch’s
power spectral density (PSD) calculation [38] is applied to
the PPG signal to find the most dominant frequency between
0.7Hz to 4Hz, which is assumed to be the frequency of
the heartbeats (see Fig. 1(e)). The estimated HR is obtained
in the form of beats per minute (BPM) by multiplying the
corresponding frequency by 60.

E. Histogram voting and fusion

To use only suitable face patch pairs for HR estimation,
histogram voting is performed based on the reliability of the
estimated HR [23]. The reliability is defined by the ratio of
the spectral power of the most dominant frequency to that of
the second dominant frequency, which is indicated as vy /vo
in Fig. 1(e). This ratio implies how dominant the heartbeats
frequency is. Thus, the higher ratio indicates more reliable
HR estimation. When the ratio is higher than a threshold
value 7., the estimated HR is round to the integer value and
voted to the corresponding histogram bin. The random patch
selection and the histogram voting are repeated K times to
construct the histogram of reliably estimated HRs.

As the result of the histogram voting, we obtain three
histograms for the G-G, the G-N, and the N-N pairs, re-
spectively (see Fig. 1(f)). To obtain the final estimated HR,

TABLE I: Illumination conditions for each scene.

Fluorescent  Illumination

(FL) light fluctuations NIR light
Scene 1 600 Iux Without ON
Scene 2 600 lux Without OFF
Scene 3 50 lux Without ON
Scene 4 50 lux With ON

histogram fusion is performed by adding the histograms
whose maximum number of counts is more than a threshold
value T,. We regard the estimation as unreliable if the
maximum number of counts is less than the threshold value.
To estimate HR in the real value precision, parabola fitting
is performed (see Fig. 1(g)). The peak of the fitted curve
provides the final estimated HR.

IV. EXPERIMENTAL RESULTS

We performed experiments under various illumination
conditions to evaluate the performance of our method.
Twenty subjects with both gender (three females) and dif-
ferent age (20’s - 60’s) took part in the experiments. The ex-
periments were approved by the research ethics committees
of Tokyo Institute of Technology and Olympus Corporation.
The informed consent was obtained from all subjects.

We used a dual-CCD RGB-NIR camera (AD-130GE, JAI
Ltd., Japan) to simultaneously record RGB and NIR face
videos without misalignment. The face videos were recorded
for 30 seconds with 1296x964 resolution, 12 bit depth
and 30 frames per second. The subjects were asked to sit
still in a chair, which was placed at a distance of 1.5 m
from the camera. A contact PPG sensor (Procomp Infinity
T7500M, Thought Technology Ltd., Canada) was attached
to the subject’s finger to obtain a reference HR.

To evaluate the robustness of our proposed method, face
videos under four illumination conditions were captured. We
used a fluorescent (FL) light for visible wavelengths and an
NIR LED light for NIR wavelengths. We also used a display
monitor, on which a movie with illumination fluctuations was
played. The illumination conditions are listed in Table I and
will be discussed in detail later.

We compared our method with the Poh et al. method [14]
and the Lam et al. method [23]. The Poh et al. method uses
a single face ROI and all RGB channels (noted as Poh-
RGB). We also extended this method for the RGB-NIR video
using all RGB and NIR channels (noted as Poh-RGBN). We
used a manually selected cheek region as a fixed face ROI
for the Poh-RGB and the Poh-RGBN methods. The Lam
et al. method uses randomly selected two face ROIs and
the G channel (noted as Lam-G), as explained before. We
also applied this method to the NIR channel (noted as Lam-
NIR) for comparison. Our proposed method performs the
spatial and spectral face ROIs selection using the G and the
NIR channels, as explained before. For the Lam-G, the Lam-
NIR, and our methods, we used the same parameter values:
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Fig. 2: Comparison of HR estimation accuracy.

T, =2, K =500, and T, = 10. The size of each face patch
is set as 30% of the horizontal length of the detected face.

To focus on the differences of used face ROIs and used
channels, for each method, we only changed the way of
obtaining the intensity trace within the face ROI. All other
processes, such as face tracking and the PPG signal esti-
mation, are the same for all methods. If the face detection
algorithm fails to detect face landmarks in more than 50%
of all frames in a video, we did not perform HR estimation
from that video. Failure cases also include the case that ICA
does not converge.

Figure 2 shows the comparison of HR estimation accuracy
under different illumination conditions. We evaluated the
percentage of subjects that the absolute error in BPM is less
than the threshold. Each result is discussed in detail below.

1) Scene 1: The videos were recorded under the FL light
(600 lux) and the NIR light. Because this condition provides
sufficient lighting for both the RGB and the NIR videos, the
Lam-G, the Lam-NIR, and our methods provide similar re-
sults. These methods incorporate the random patch selection
process, contributing to more accurate HR estimation than
the Poh-RGB and the Poh-RGBN methods using the single
fixed face ROIL

2) Scene 2: The videos were recorded under only the FL
light (600 lux). This condition assumes the situation that the
NIR light is not available or not necessary such as in daytime.
In such the situation, our method automatically works as the
RGB camera-based method, providing the similar result to

the result of the Lam-G method. In contrast, the Lam-NIR
method does not work well for this scene because of the
absence of the NIR light.

3) Scene 3: The videos were recorded under the FL light
(50 lux) and the NIR light. This is a low-light condition, un-
der which the RGB camera-based methods fail to accurately
estimate HR. In contrast, the Lam-NIR method provides a
better result by exploiting the NIR light. Our method also
can successfully select suitable patch pairs from the G-N
pair and the N-N pair and provide the best performance.

4) Scene 4: The videos were recorded under the FL light
(50 lux) and the NIR light. To evaluate the robustness to
illumination fluctuations, a movie had also been played on
the display monitor, which was placed in front of a subject.
This is a challenging condition for the RGB camera-based
methods, because the videos were recorded under both a low-
light condition and illumination fluctuations in the visible
domain. Thus, it is difficult to accurately estimate HR by the
Poh-RGB and the Lam-G methods. In contrast, our method
can naturally work as the NIR camera-based method (similar
to the Lam-NIR method) and provide the accurate result.

5) Average of all scenes: Figure 2(e) shows the average
results of all scenes. The Lam-G and the Lam-NIR methods
with the random patch selection are more robust than the
Poh-RGB and the Poh-RGBN methods. However, the Lam-
G and the Lam-NIR methods fail to accurately estimate HR
at some scenes. In contrast, our method enables accurate
HR estimation under various illumination conditions and



achieves the absolute errors less than 3 BPM for more than
90% of subjects.

V. CONCLUSION

In this paper, we proposed a novel HR estimation method
from an RGB-NIR face video based on the automatic spatial
and spectral selection of suitable face patches. Experimental
results for 20 subjects demonstrated that our method can
robustly estimate HR under various illumination conditions,
including the conditions under which existing RGB or NIR
camera-based methods fail to accurately estimate HR. Since
our method covers both visible and invisible NIR domains,
a wide range of applications, such as day and night time HR
monitoring, is expected in future.
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