
IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 20XX 1

Spatial-Spectral-Temporal Fusion
for Remote Heart Rate Estimation

Shiika Kado, Yusuke Monno, Member, IEEE, Kazunori Yoshizaki, Masayuki Tanaka, Member, IEEE, and
Masatoshi Okutomi, Member, IEEE

RGB video

NIR video

Time

Sliding windows for temporal fusion

�

G

NIR

Spatial-spectral-temporal fusion

HR (BPM)

Final estimated HR

78.12 BPM

C
o
u

n
t

�

Random sampling for spatial and spectral fusion Fused HR histogram

Abstract— In this paper, we propose a novel heart rate
(HR) estimation method using simultaneously recorded
RGB and near-infrared (NIR) face videos to improve the
robustness of camera-based remote HR estimation against
illumination fluctuations and head motions. The key to
robust HR estimation is constructing the histogram of HRs
for a considered time window by voting candidate HRs that
are estimated using different spatial face patches, spectral
modalities (i.e., RGB and NIR), and temporal short-time
sub-windows. The histogram voting is performed only for
the candidate HRs that pass through a reliability check of
HR estimation. The final HR estimate for the considered
time window is then obtained by detecting the most frequently voted HR bin and performing parabola fitting using its
neighboring bins. By spatially, spectrally, and temporally fusing the candidate HRs for majority voting, our method can
automatically exploit suitable video sub-regions less affected by illumination fluctuations and head motions to enable
robust HR estimation. Through the experiments on 168 RGB-NIR video recordings, we demonstrate that our fusion-based
method achieves improved HR estimation accuracy compared with existing methods.

Index Terms— Remote heart rate measurement, imaging photoplethysmography, RGB and near-infrared cameras.

I. INTRODUCTION

HEART rate (HR) is one of the most essential vital signs,
which provides the physiological and emotional state of

a person. HR is typically measured using a photoplethysmog-
raphy (PPG) sensor attached to human skin. An optical PPG
sensor measures light reflected from or transmitted through
the skin. Since temporal light intensity change on the skin is
caused by blood volume change due to heartbeats, HR can be
estimated from the PPG signal [1], [2].

To monitor HR activities for a longer duration, HR measure-
ment using a wearable PPG sensor has been actively studied
in recent years [3]. While wearable devices, such as wrist-PPG
sensors, are beneficial in that they do not interfere with the
daily activities of a user, they have a limitation that the sensors
must contact with skin. This requirement is not desirable
for people with sensitive skin (e.g., neonates, elderly people,
and skin damaged patients) and also may reduce the user’s
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comfort such as during sleep. Therefore, many non-contact HR
measurement techniques using various types of sensors (e.g., a
Doppler radar [4], [5], a microwave sensor [6], an ultrasound
system [7], and a digital camera [8]–[10]) have also been
proposed (see [11] for a review). These non-contact-based
systems are useful for remote HR measurement applications
such as neonate monitoring and telemedicine. While the non-
contact systems based on waveform measurement (e.g., radar,
microwave, and ultrasound) assume that the user is static,
camera-based systems are less constrained and do not require
that the user is strictly static. Furthermore, since cameras are
now widely spread in our lives, we focus on a camera-based
system for remote HR measurement in this study.

With the same principle as the contact PPG sensor, HR can
be estimated remotely using a digital camera by recording a
face video and detecting subtle pixel intensity change on the
face skin [8]–[10]. Camera-based HR measurement allows for
various remote vital sensing applications such as monitoring of
neonates [12], intraoperative patients [13], or drivers [14] and
telemedicine [15]. While camera-based remote HR measure-
ment has progressed greatly in recent years [16]–[19], accurate
HR estimation in uncontrolled situations remains difficult due
to various types of noise such as ambient light fluctuations and
person’s head motions. The PPG signal extracted from a face
video is susceptible to such noise, which is a main challenge
of camera-based remote HR estimation.

To tackle this challenge, in this paper, we propose a novel
spatial-spectral-temporal fusion method for robust HR estima-
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tion. Different from most existing studies that solely use either
an RGB or near-infrared (NIR) domain, we exploit an RGB-
NIR face video, which consists of simultaneously recorded
and spatially aligned RGB and NIR face videos.

One great advantage of using the NIR domain is the ability
to increase the light intensity without disturbing human per-
ception by exploiting an invisible NIR light source. This ability
enables HR estimation under low-light or dark conditions. It
also can alleviate the effect of ambient light fluctuations, which
are more likely to occur in the visible domain, since typical
artificial light sources, such as TV and PC monitors, have the
spectral power only in the visible wavelengths.

While NIR camera-based HR estimation has been actively
studied [20]–[24], it is know that the PPG signal in the NIR
domain is weaker than that in the visible domain (especially
green-channel wavelengths [25], [26]). Thus, complementally
using the RGB and the NIR domains could further improve
the robustness of HR estimation under various illumination
conditions. However, it raises a new challenge of determining
which spectral modality is more suitable for each local face
region depending on each illumination condition.

To address this challenge, we propose a novel spatial and
spectral face patch sampling and fusion manner that can
automatically select suitable local face patches and spectral
modalities. Furthermore, to improve the robustness to head
motions, we combine the spatial and spectral fusion manner
with a novel temporal fusion manner, where we aim at ex-
ploiting short-time periods with relatively little head motions.

In our fusion-based method, we estimate HR by taking the
RGB-NIR face video of a certain time window as an input.
Inspired by the Lam and Kuno method [27], we construct the
histogram of candidate HRs that are estimated using different
spatial face patches, spectral modalities (i.e., RGB and NIR),
and temporal short-time sub-windows. The histogram voting
is performed only for the candidate HRs that pass through a
reliability check of HR estimation. The final HR estimate for
the considered time window is then obtained by detecting the
most frequently voted HR bin and performing parabola fitting
using its neighboring bins.

The key idea of our method is to collect a lot of measure-
ments using spatial, spectral, and temporal sampling, and to
estimate HR by selecting reliable measurements (less affected
by illumination fluctuations and head motions) and fusing the
selected ones. Our spatial-spectral-temporal sampling and fu-
sion approach significantly increases the possibility of extract-
ing stable video regions even under illumination fluctuations
and head motions, contributing to the significant robustness
and accuracy improvement of the HR estimation.

In experiments, we evaluate our fusion-based method us-
ing RGB-NIR face videos captured by a dual-CCD RGB-
NIR camera. Through the evaluation of 168 RGB-NIR video
recordings under various illumination conditions and includ-
ing head motions, we demonstrate that our method achieves
improved HR estimation accuracy in comparison with existing
methods. We also present the first feasibility evaluation results
using a novel single-sensor RGB-NIR camera prototype [28]
toward low-cost and compact realization of RGB-NIR camera-
based HR estimation. Although we have used the RGB-NIR

camera setup in this study, our method could extensible to any
multi-spectral/modal camera setups such as in [29]–[32].

This paper is an extended version of our previous conference
paper [33]. In this extended study, we have improved the
robustness of our method against head motions by propos-
ing an extended method incorporating the temporal fusion.
According to this, we have conducted extended experiments
using additional RGB-NIR videos including head motions. We
also have added the first HR estimation results using a novel
single-sensor RGB-NIR camera prototype.

The rest of this paper is organized as follows. Section II
briefly reviews related work. Section III details our proposed
HR estimation method based on the spatial-spectral-temporal
fusion. Section IV shows experimental results in comparison
with existing methods. Section V concludes the paper.

II. RELATED WORK

Camera-based remote HR estimation has received increas-
ing attention after the Poh et al. work demonstrates successful
HR measurement using a consumer-grade RGB camera [9],
[10]. The Poh et al. method extracts temporal RGB intensity
traces on a face region of interest (ROI) and then performs
independent component analysis (ICA) to extract the PPG sig-
nal from the RGB traces. It then applies Fourier transform to
the extracted PPG signal to find the most dominant frequency
that is assumed to be the heartbeats frequency. Many improved
methods have been proposed based on the Poh et al. framework
(see the papers [2], [16]–[19] for comprehensive reviews). For
example, some methods reduce noise artifacts by mixing the
RGB traces to extract the PPG signal [34]–[36], instead of
applying ICA. In what follows, we briefly introduce existing
methods closely related to our work by focusing on the three
aspects: (i) the use of multiple face ROIs, (ii) the removal of
noisy time periods, and (iii) the use of non-RGB information.

Some studies have presented a method using multiple local
face ROIs to make HR estimation more robust to illumination
variations at different face regions [37]–[39]. These methods
divide the entire face into local face patches using the detected
facial landmarks and perform quality-based fusion or selection
of temporal intensity traces extracted from each patch. As a
state-of-the-art approach, Lam and Kuno proposed a method
that randomly and repeatedly selects face patch pairs and
uses corresponding green-channel intensity trace pairs as the
inputs of ICA to extract the PPG signal for candidate HR
estimation [27]. The final HR estimate is then determined
based on the majority voting of candidate HRs from random
face patch pairs. Although those methods based on multiple
face ROIs have shown improved robustness to illumination
variations, their application is still limited to the scenes with
relatively little head motions.

To address larger head motions, some studies have at-
tempted to discard the time periods with significant noise
components. In [40], [41], quality-based intensity trace eval-
uation is performed to adaptively remove noisy time periods.
In [42], [43], an optimization or a deep learning approach is
applied to a constructed spatial-temporal intensity trace matrix
to estimate HR by exploiting reliable spatial-temporal regions.
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However, when using only an RGB video as these studies do,
it is essentially difficult to accurately estimate HR under low-
light conditions or ambient light fluctuations from artificial
visible light sources.

To overcome the limitation of RGB camera-based methods,
some studies have exploited non-RGB information. NIR cam-
era [20]–[24] or thermal camera [44], [45] setups have been
the most frequently used to enable HR estimation under low-
light conditions or visible light fluctuations. Several methods
have exploited multi-spectral/modal information using a multi-
spectral camera [29] or multiple cameras with different spec-
tral bands/modalities [31], [32]. These non-RGB camera-based
methods usually take one of three approaches: (i) solely use a
single band [22], [44], [45], (ii) use all obtained bands [20],
[21], [23], [31], or (iii) heuristically select the best band set
based on experimental results [24], [29], [32]. However, it
remains challenging to adaptively select a suitable band set
depending on each illumination condition. Very recently, the
study [46] has used an RGB-NIR camera setup, which we first
exploited for HR estimation in our earlier study [33]. However,
the method in [46] requires background estimation, which is
another difficult task in cluttered scenes.

Our study is differentiated from the above-mentioned stud-
ies in that we propose a general framework that can spatially,
spectrally, and temporally exploit suitable video sub-regions
for HR estimation. In this paper, our framework is imple-
mented and validated using an RGB-NIR camera setup.

III. PROPOSED HR ESTIMATION METHOD

A. Overall framework with temporal fusion
Figure 1 shows the overall framework of our proposed HR

estimation method using an RGB-NIR face video. In this
study, we consider the problem of estimating HR for a certain
time window (30 seconds in our experiments), assuming the
situations that HR does not change drastically within that time
duration. To improve the robustness to head motions which
may occur in the time window, we introduce a novel temporal
fusion manner. Our expectation is that, in real HR monitoring
situations such as at working places and driver seats, there
would be short-time periods with relatively little head motions,
even if there exists a large head motion in the time window.
With this expectation, the time window is divided into short-
time sub-windows (five seconds in our experiments based on
the report of [47]) by a sliding window manner (with one
second intervals in our experiments). Then, for each sub-
window, the histogram of candidate HRs is constructed based
on the spatial and spectral face patch sampling-based HR
estimation, as illustrated in Fig. 2. The constructed histograms
are then fused to form the final histogram. As shown in the
right-hand side of Fig. 1, the final HR estimate is obtained
based on majority voting and parabola fitting, assuming that
the candidate HRs can reliably and consistently be estimated
from the short-time periods less affected by the head motions.

B. Histogram construction based on spatial and spectral
face patch sampling-based candidate HR estimation

We next detail our spatial and spectral face patch sampling-
based HR estimation method for constructing the histogram of

candidate HRs for each short-time sub-window (Fig. 2). Our
algorithm is inspired by the Lam and Kuno’s method [27] that
randomly and repeatedly samples two face patches in the G
channel. We extend this method by adding the NIR channel,
aiming to spatially and spectrally select suitable local face
patches for HR estimaiton.

1) Face landmark detection and tracking: Our algorithm first
performs face detection and tracking in three videos, i.e., G,
NIR, and G+NIR videos. Since the input RGB and NIR videos
are spatially aligned, the G+NIR video is generated by the
average of the G and the NIR videos. We use the algorithm
in [48] (with the implementation by [49], [50]) to detect 68
face landmarks (see Fig. 2(b)) and apply the algorithm in [27]
to track the detected face landmarks between image frames. If
the landmarks cannot be detected in a frame, the last detected
landmarks in previous frames are copied to that frame.

2) Face patch sampling and signal extraction: Our algorithm
then extracts a pair of temporal intensity traces based on our
spatial and spectral face patch sampling manner, as shown in
Fig. 2(c) and 2(d). Our algorithm randomly and repeatedly
samples three pairs of face patches, which are referred to as
the G-G pair, the G-N pair, and the N-N pair, respectively. For
each pair, temporal intensity traces are extracted as follows.

• G-G pair: Two face patches are randomly selected in
the G channel. For each patch, the temporal trace of the
averaged G intensity is extracted.

• G-N pair: One face patch is randomly selected in the
G+NIR channel. For this patch, the temporal traces of
the averaged G and NIR intensities are extracted.

• N-N pair: Two face patches are randomly selected in the
NIR channel. For each patch, the temporal trace of the
averaged NIR intensity is extracted.

3) Face patch pair-based HR estimation: Our algorithm then
follows the HR estimation pipeline of [27] to estimate candi-
date HRs from each pair of traces. First, moving average filter
is applied to the extracted intensity traces to reduce noise. Fast
ICA [51] is then performed to estimate the PPG signal from
the intensity traces. Detrending filter [52] and moving average
filter are then applied to the PPG signal to remove trends and
reduce noise. Welch’s power spectral density calculation [53]
is then applied to the PPG signal to find the most dominant
frequency between 0.7Hz to 4Hz, which is assumed to be the
frequency of the heartbeats. The estimated HR is obtained
in the form of beats per minute (BPM) by multiplying the
corresponding frequency by 60.

4) Histogram voting and fusion: To use only suitable face
patch pairs for the final HR estimation, histogram voting is
performed based on the reliability of the estimated HR [27].
The reliability is defined by the ratio of the spectral power of
the most dominant frequency to that of the second dominant
frequency, which is indicated as v1/v2 in Fig. 2(e). This ratio
implies how dominant the heartbeats frequency is. Thus, the
higher ratio indicates more reliable HR estimation. When the
ratio is higher than a threshold value Tr, the estimated HR
is round to the integer value and voted to the corresponding
histogram bin. The random patch sampling and the histogram
voting are repeated K times to construct the histogram of re-
liably estimated candidate HRs. As the result of the histogram
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Fig. 1: The overall framework of our proposed HR estimation method using an RGB-NIR face video. We refer to Section III-A
for detailed explanation and Fig. 2 for the overall flow of the histogram construction for each short-time sub-windows.
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Fig. 2: The overall flow of the histogram construction for each short-time sub-windows based on the spatial and spectral face
patch sampling-based candidate HR estimation. We refer to Section III-B for detailed explanation.

voting, we obtain three histograms for the G-G, the G-N,
and the N-N pairs, respectively (see Fig. 2(f)). To obtain one
histogram for each short-time sub-window, histogram fusion
is performed by adding the three histograms.

C. Final HR estimate calculation

To derive the final HR estimate for the considered time
window, the constructed histograms for each short-time sub-
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windows are fused to form the final histogram. In the final
histogram, the most frequently voted HR bin is considered as
the most reliably and consistently estimated HR exploiting
stable video sub-regions less affected by illumination fluc-
tuations and head motions considering the spatial-spectral-
temporal domain. The final HR estimate is obtained in the
real value precision by performing parabola fitting using that
bin and its neighboring bins. The peak of the fitted parabola
is the estimated HR for the considered time window.

IV. EXPERIMENTAL RESULTS

A. Setups and data collection

Figure 3 shows the experimental setup for collecting data.
We used two types of an RGB-NIR camera, as shown in Fig. 4.
The first one is a dual-CCD RGB-NIR camera (AD-130GE,
JAI Ltd., Japan), which uses a beam splitter and two image
sensors. The second one is a single-sensor RGB-NIR camera
prototype [28], which uses a single image sensor equipped
with an RGB-NIR filter array. Both cameras can simultane-
ously record RGB and NIR videos without misalignment.

The subjects were asked to sit in a chair, which was
placed at a distance of 1.5 meter from the camera. A contact
PPG sensor (Procomp Infinity T7500M, Thought Technology
Ltd., Canada) was attached to the subject’s finger to acquire
reference HR for the evaluation. A display monitor was set
on the table in front of the subject to simulate a situation
with illumination fluctuations in some scenes. Total 38 subjects

TABLE I: Conditions for each scene. The NIR light was turned
on for all scenes.

Fluorescent
(FL) light

Illumination
fluctuations

Number of
videos

Stationary
scenes

Scene 1 600 lux Without 32
Scene 2 50 lux Without 32
Scene 3 50 lux Movie 32

Motion
scenes

Scene 4 600 lux Without 43
Scene 5 50 lux Movie 29

TABLE II: Compared methods.

Methods Spatial Spectral Temporal

Poh [10]
CHROM [34]
POS [35]
Lam [27] X
Proposed (S+S) X X
Proposed (S+T) X X
Proposed (S+S+T) X X X

(35 Eastern Asians and 3 Southeastern Asians) with both gen-
der (8 females) and different age (20’s - 60’s) took part in the
experiments. The experimental protocols were approved by the
research ethics committees of Tokyo Institute of Technology
and Olympus Corporation. The informed consent was obtained
from all subjects.

We conducted the experiments for five scenes to evaluate the
robustness of our method against illumination fluctuations and
head motions. Table I summarizes the experimental conditions
for each scene. The first class of experiments was conducted in
the stationary scenes, where the subjects were asked to sit still
in the chair. The second class of experiments was conducted in
the motion scenes, where the subjects were asked to perform
some tasks including head motions. As the lighting setup, we
used a fluorescent (FL) light for visible wavelengths and two
NIR LEDs, which were placed at the right front and the left
front of the subject. The NIR LEDs have a light emission
wavelength range from 760nm to 940nm with its peak at
850nm. We also used the display monitor to play a movie
with light fluctuations for some scenes. The duration of the
video (i.e., the considered time window) is 30 seconds for all
scenes. The video data was generated in Motion JPEG 2000
format from the original image frames captured in the RAW
data format. The conditions for each scene are further detailed
in the result subsections.

B. Compared methods
We compared our method with the Poh et al. method [10]

as a baseline method and the CHROM method [34], the
POS method [35], and the Lam and Kuno’s method [27] as
state-of-the-art methods. Table II shows the property of each
method. The Poh’s method, the CHROM method, and the
POS method use a fixed face ROI and RGB channels. The
Poh’s method applies ICA to the RGB traces to extract the
PPG signal. The CHROM method uses a chrominance-based
approach and derives two orthogonal color difference signals

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JSEN.2020.2997785

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



6 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 20XX

�

��

��

��

��

��

��

��

	�


�

���

��� � ��� � ��� � ��� � ��� �

�
�
��
�
�
��
�
�
	

�	
�

�
��
��
�	

��
�
�

�

��
	�
�
	�
��


�	
�
	�
�
��
��


��
�

��������	
�	�����	�
���
���	�����

���

�����

��	


��

�
��������	�	�

�
��������	���

�
��������	�	���

(a) Scene 1: FL light (600 lux) + NIR light
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(b) Scene 2: FL light (50 lux) + NIR light
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(c) Scene 3: FL light (50 lux) + NIR light + Movie

Fig. 5: The comparison of HR estimation accuracy for the stationary scenes under three illumination conditions.

from the RGB traces. Assuming the standardized skin color,
the PPG signal is computed as a linear combination of the
two chrominance signals. The POS method derives the PPG
signal as a linear combination of the RGB traces using a plane
orthogonal to the skin tone. We used a manually selected left
and right cheek regions as a fixed face ROI for the Poh’s, the
CHROM, and the POS methods. We employed iPhys toolbox
by McDuff and Blackford [54] to implement the CHROM and
the POS methods. The Lam’s method uses randomly sampled
two face patches and the G channel. In other words, the Lam’s
method employs the spatial face ROI sampling and fusion. Our
proposed method performs the spatial, spectral and temporal
face ROI fusion using the G and the NIR channels (noted as
proposed (S+S+T)). To assess the effectiveness of each fusion
manner, we also compared the method using only the spatial
and spectral fusion (noted as proposed (S+S)) and the method
using only the spatial and temporal fusion with the G channel
(noted as proposed (S+T)). For the Lam’s method and the
three proposed methods, we used the same parameter values,
K = 500 and Tr = 2, for the random patch sampling and the
reliability check. The size of each face patch is set as 30%
of the horizontal length of the detected face. We applied the
same parameter values as the original method proposed by
Lam and Kuno [27], which were empirically determined in
their study. For the two proposed methods with the temporal
fusion, we used five seconds short-time sub-windows with one
seconds intervals. To focus on the differences in used fusion
manners for each method, we only have changed the way of
taking face ROIs to obtain the temporal intensity traces. All
the other processes, such as the face tracking and the PPG
signal extraction, are the same for all methods.

To compute reference HR using the contact PPG sensor, we
first detected the peaks of the contact sensor’s PPG signal.
We then manually confirmed that the detected peaks are
correct and the contact sensor’s PPG signal is reliable as a
reference. Then, we calculated inter-beat time intervals (IBIs)
between every two successive peaks. The average of all IBIs
in the considered time window was then calculated to derive
the average IBI for that time window. Finally, the contact
PPG sensor’s HR for that time window was computed by
dividing 60 by the average IBI.

C. Results for stationary scenes
We first evaluate the HR estimation accuracy for the station-

ary scenes under three different illumination conditions. These
experiments were performed by using the dual-CCD camera.
Figure 5 shows the HR estimation accuracy in comparison with
the contact PPG sensor. In the result graphs, the horizontal axis
shows the absolute HR estimation error threshold in BPM. The
vertical axis shows the percentage of subjects whose absolute
HR estimation error is less than the threshold of the horizontal
axis. In each graph, a more upper-left line indicates that the
method provides better performance and can estimate HR with
fewer absolute errors for more subjects.

1) Scene 1: The videos were recorded under the FL light
(600 lux) and the NIR light. Because this condition provides
sufficient lighting for both the RGB and the NIR videos, the
Lam’s method and our three methods provide similar results.
These methods incorporate the spatial face ROI sampling and
fusion manner, contributing to slightly better performance than
the CHROM and the POS methods, which are state-of-the-art
methods using a fixed face ROI.

2) Scene 2: The videos were recorded under the FL light
(50 lux) and the NIR light. This is a low-light condition,
under which the RGB camera-based methods (Poh, CHROM,
POS, Lam and proposed (S+T)) are difficult to accurately
estimate HR, though the CHROM and the POS methods
show much better performance than the baseline Poh’s method
by effectively suppressing noise artifacts with color channel
mixing. In contrast, our methods with the spectral fusion
using both the G and the NIR channels (proposed (S+S) and
proposed (S+S+T)) can successfully improve the robustness
of HR estimation by spatially and spectrally selecting suitable
face patch pairs from the G-G, the G-N and the N-N pairs,
while the Lam’s method only applies the spatial fusion using
the G-G pairs.

3) Scene 3: The videos were recorded under the FL light
(50 lux) and the NIR light. A movie had also been played
on the display monitor. This is a challenging condition for the
RGB camera-based methods because the videos were recorded
under both a low-light condition and light fluctuations in the
visible domain. Compared with Scene 2, the accuracy of the
RGB camera-based methods (Poh, CHROM, POS, Lam and
proposed (S+T)) decreases due to the light fluctuations from
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1 31 61 91 131 141 146 151 181

RGB frames

NIR frames

(a) Scene 4: FL light (600 lux) + NIR light + Text typing

1 31 61 96 151 156 161 335 361

RGB frames

NIR frames

(b) Scene 5: FL light (50 lux) + NIR light + Movie + Speaking

Fig. 6: The example image frames for the motion scenes.
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(a) Scene 4: FL light (600 lux) + NIR light + Motion
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(b) Scene 5: FL light (50 lux) + NIR light + Movie + Motion

Fig. 7: The comparison of HR estimation accuracy for the motion scenes.

the monitor. For this challenging condition, the CHROM and
the POS methods provide limited performance because these
methods fail to sufficiently suppress the artifacts derived from
illumination fluctuations. Although the Lam’s method shows
better performance than the other existing methods, it only
provides roughly 47% success ratio for the error threshold
of 5 BPM. In contrast, our methods with the spectral fusion
(proposed (S+S) and proposed (S+S+T)) remain stable and
present better HR estimation accuracy than the other methods.

D. Results for motion scenes
We next evaluate the HR estimation accuracy for the motion

scenes. These experiments were also performed by using the
dual-CCD camera. Two illumination conditions were tested
for the motion scenes, which are detailed later. In the motion
scenes, for each video recording, the subjects were asked
to sit in the chair and perform one of the three tasks with
head motions. The details of motion protocols for each task
are as follows. (i) Tracking the ball on the display monitor:
The subject was asked to track the ball displayed on the
monitor, which entails about 90-degrees vertical head rotation
at a speed of about 18 degrees per second. The task was
continued during video recording. (ii) Typing displayed texts
on a smartphone: The subject was asked to look at the display

monitor and memorize the displayed texts for five seconds.
In the next five seconds, the subject was asked to type the
texts on a smartphone, which entails look-down and look-up
head motions. The task was repeated during video recording.
(iii) Speaking with a person who is beside the subject: The
subject was asked to face forward for five seconds. In the next
five seconds, the subject was asked to speak with the person
beside the subject, which entails about 90-degrees horizontal
head rotation and facial movements associated with speaking.
The task was repeated during video recording.

1) Scene 4: The videos were recorded under the FL light
(600 lux) and the NIR light, which is a sufficient condition
for both the RGB and the NIR videos. Figure 6(a) shows
example image frames for this illumination condition with the
text typing task. Figure 7(a) shows the result for 43 video
recordings (15 videos for the ball tracking task, 15 videos for
the text typing task, and 13 videos for the speaking task).
Generally, the head motions make the HR estimation very
difficult and all methods present worse HR estimation accuracy
compared with the stationary scenes. In the motion scenes,
the methods without the temporal fusion (Poh, CHROM,
POS, Lam, and proposed (S+S)) are not able to estimate HR
accurately, because the temporal PPG signal extracted from the
whole time window is very susceptible to motion noise. For the
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(a) Scene 3: FL light (50 lux) + NIR light + Movie
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(b) Scene 5: FL light (50 lux) + NIR light + Movie + Motion

Fig. 8: The evaluation of HR estimation accuracy when using the single-sensor RGB-NIR camera.

situation with large head motions, sufficiently suppressing the
motion artifacts using the whole time-window RGB signals
is difficult, even with state-of-the-art color channel mixing
techniques of the CHROM and the POH methods. In contrast,
our methods with the temporal fusion (proposed (S+T) and
proposed (S+S+T)) can improve the accuracy of HR estima-
tion. These results validate the effectiveness of the temporal
fusion that tries to exploit short-time periods less affected by
the head motions.

2) Scene 5: The videos were recorded under the FL light
(50 lux) and the NIR light. A movie had also been played
on the display monitor. Figure 6(b) shows example image
frames for this illumination condition with the speaking task.
This scene is very challenging because the videos include all
considered noise sources, i.e., low lightness, light fluctuations,
and head motions. This condition assumes the HR monitoring
situations such that a person watches a movie in a theater or
drives a car in the night. Figure 7(b) shows the result for 29
video recordings (16 videos for the ball tracking task and 13
videos for the speaking task). The RGB camera-based methods
(Poh, CHROM, POS, Lam, proposed (S+T)) fails to estimate
HR in this scene because of low lightness and light fluctuations
in the visible domain. On the other hand, our method with
the spectral fusion (proposed (S+S)) shows better performance
owing to the use of the NIR video. In addition, our method
with all the spatial, spectral, and temporal fusion manners,
(proposed (S+S+T)) can further improve the robustness of HR
estimation for this very challenging condition by exploiting
suitable video sub-region less affected by both the light fluc-
tuations and the head motions in the spatial-spectral-temporal
domain.

Table III shows the overall comparison of HR estimation
accuracy and compares the percentage of subjects whose
absolute HR estimation error is less than 5 BPM for stationary
scenes and less than 10 BPM for more challenging motion
scenes. We can confirm that our proposed method based on the
spatial-spectral-temporal fusion (proposed (S+S+T)) achieves
the best performance for both stationary and motion scenes.

Although our method clearly outperforms the existing meth-
ods as summarized in Table III, it still has some limitations.
(i) Our method is based on the expectation that HR can be
derived reliably from some of the short-time sub-windows.

TABLE III: The overall comparison of HR estimation accuracy.
The table compares the percentage of subjects whose absolute
HR estimation error is less than 5 BPM for stationary scenes
and less than 10 BPM for challenging motion scenes.

Percentage of subjects Percentage of subjects
(Error < 5 BPM) (Error < 10 BPM)

Stationary scenes Motion scenes
Scene1 Scene2 Scene3 Scene4 Scene5

Poh 50.00 43.75 9.38 15.00 7.41
CHROM 96.88 78.13 31.25 12.50 7.41
POS 100.00 78.13 31.25 22.50 11.11
Lam 100.00 71.88 46.88 30.00 14.81
Proposed (S+S) 100.00 93.75 84.38 35.00 40.74
Proposed (S+T) 96.88 65.63 53.13 60.00 14.81
Proposed (S+S+T) 100.00 93.75 93.75 62.50 51.85

Therefore, our method may fail to accurately estimate HR
under the situations that continuous and hard motions exist
during a whole time window, such as fitness scenes. (ii) Our
method derives the final HR estimate by the majority voting
of candidate HRs from different short-time sub-windows. This
means that the most dominant and consistent HR in that time
window is considered as our method’s output. Therefore, if a
large HR spread exists during the considered time window, our
method may fail to sufficiently track that HR spread. Although
the use of a shorter time window may increase the tracking
capability to the HR spread, it may decrease the robustness of
HR estimation as a trade-off.

E. Results for the single-sensor RGB-NIR camera

Compared with the dual-CCD RGB-NIR camera, the single-
sensor RGB-NIR camera enables lower cost and more compact
video recordings as current consumer RGB cameras do, and
thus it is more suitable for remote HR estimation applications
in various embedded systems. However, the single-sensor
camera is still in the research and development stage, we here
evaluate its feasibility for remote HR estimation.

For the evaluation, we captured the same scenes by us-
ing the dual-CCD and the single-sensor cameras in parallel.
Figure 8(a) and 8(b) respectively show the result for 19
video recordings under the same condition as Scene 3 and
the result for 29 video recordings under the same condition
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as Scene 5. From these results, we can confirm that the
single-sensor camera presents similar trends with the dual-
CCD camera, though there are slight performance differences,
which could be due to the different sensor characteristics such
as in the pixel size and the camera spectral sensitivity. This
feasibility evaluation demonstrates the potential of the single-
sensor RGB-NIR camera, as well as the dual-CCD RGB-NIR
camera, for remote HR estimation.

V. CONCLUSION

In this paper, we have proposed a novel spatial-spectral-
temporal fusion method that can significantly improve the
robustness of camera-based remote HR estimation against
illumination fluctuations and head motions. Our method takes
an RGB-NIR face video as an input and automatically exploits
stable video sub-regions less affected by illumination fluctua-
tions and head motions by fusing the candidate HRs estimated
using different face patches, spectral modalities, and temporal
short-time sub-windows. We have validated the effectiveness
of our fusion-based method using two types of an RGB-NIR
camera. The experimental comparison with existing methods
has demonstrated that our method can achieve improved HR
estimation accuracy for challenging scenes including illumi-
nation fluctuations and head motions. In future work, we
will investigate the extension of our method to estimate other
cardiac parameters such as inter-beat intervals [55] and heart
rate variability [56].
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