
Inter-Beat Interval Estimation from Facial Video
Based on Reliability of BVP Signals

Yuichiro Maki1, Yusuke Monno1, Kazunori Yoshizaki2, Masayuki Tanaka1,3,
and Masatoshi Okutomi1

Abstract— Inter-beat interval (IBI) and heart rate variability
(HRV) are important cardiac parameters that provide physi-
ological and emotional states of a person. In this paper, we
present a framework for accurate IBI and HRV estimation from
a facial video based on the reliability of extracted blood volume
pulse (BVP) signals. Our framework first extracts candidate
BVP signals from randomly sampled multiple face patches. The
BVP signals are then assessed based on a reliability metric to
select the most reliable BVP signal, from which IBI and HRV
are calculated. In experiments, we evaluate three reliability
metrics and demonstrate that our framework can estimate
IBI and HRV more accurately than a conventional single face
region-based framework.

I. INTRODUCTION

Heart rate (HR) and inter-beat interval (IBI) are essential
cardiac parameters that provide physiological and emotional
states of a person. HR represents the number of heartbeats
in a certain time window and is typically described in the
form of mean HR for the window. IBI represents a time
interval between two successive heartbeats and thus indicates
an instant cardiac state in a finer scale than mean HR1.
Furthermore, many heart rate variability (HRV) parameters
can be calculated from beat-to-beat change of IBIs, which
provides an important clue of many physiological and emo-
tional conditions such as heart rhythm abnormalities and
stress levels. Therefore, accurate measurement of IBI enables
a lot of applications such as health monitoring of neonates
[1] and prediction of cardiac diseases [2].

HR and IBI are typically measured using an optical contact
photoplethysmography (cPPG) sensor that measures a blood
volume pulse (BVP) signal derived from the change of blood
volume in vessels due to heartbeats [3], [4]. Since the cPPG
sensor needs to be attached to human skin, it poses restriction
on the subject and precludes many applications that non-
contact measurement is preferable or necessary.

To overcome the limitation of cPPG sensors, imaging
or remote PPG (iPPG or rPPG), which measures the BVP
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signal from a facial video in a non-contact manner, has
received increasing attention in recent years (see [4]–[6]
for a survey). Most of existing iPPG methods focus on
mean HR measurement and estimate the most dominant
frequency of the BVP signal that corresponds to the mean
heartbeats frequency. Previous studies have demonstrated
that HR can be robustly estimated from a facial video in
relatively stable conditions without large face movements
and illumination changes. However, accurate estimation of
IBI is still a challenging task even in such stable conditions
because it requires accurate estimation of beat-to-beat peak
positions of the BVP signal, not only the most dominant
frequency.

In this paper, we present a framework for accurate IBI
estimation from a facial video. Inspired by recent state-of-
the-art iPPG methods (e.g., [7]–[10]), our framework first
extracts candidate BVP signals from sampled multiple face
patches. The candidate BVP signals are then assessed based
on a reliability metric to select the most reliable BVP signal,
from which IBI is calculated. Main contributions of this work
are summarized as follows.
• While the existing methods based on face patches [7]–

[10] mainly focus on mean HR estimation, we present
an extended framework for IBI estimation that includes
a signal processing pipeline to robustly calculate beat-
to-beat peak positions.

• We present a new dataset2 with high frame-per-second
(300-fps) face videos, which demonstrates a better cor-
relation with a reference cPPG sensor than standard 30-
fps videos.

• We experimentally evaluate three reliability metrics and
demonstrate that our framework based on the reliability
metric can significantly improve the IBI estimation ac-
curacy compared with a conventional single face region-
based framework.

II. IBI ESTIMATION FRAMEWORK

Figure 1 presents the overall flow of our IBI estimation
framework. In our framework, we apply an algorithm to
extract a BVP signal from a pair of temporal intensity
traces of the face. Firstly, a pair of two face patches is
randomly sampled within the detected face region. This
sampling process is repeated until a sufficient number of
pairs is acquired. Then, for each pair, a candidate BVP signal

2The dataset and the code is publicly available at the following website.
http://www.ok.sc.e.titech.ac.jp/res/VitalSensing/
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Fig. 1. The overall flow of our IBI estimation framework based on the reliability evaluation of BVP signals.

is extracted. The extracted BVP signals from all pairs are
then evaluated based on a reliability metric. Finally, IBI is
calculated from the selected most reliable BVP signal. Each
step is detailed below.

A. Face patch sampling

To sample the face patches, we follow the random
sampling manner in [8]. For each video frame, 66 facial
landmarks are firstly detected using the algorithm in [11]
(implemented by [12]). Based on the detected landmarks, a
pair of two face patches is randomly and repeatedly sampled,
as shown in Fig. 1. These patches are tracked between the
video frames using the landmark tracking algorithm in [8].

B. BVP signal extraction

For each pair of face patches, one candidate BVP signal
is extracted using a common iPPG framework [8], [13],
[14]. Firstly, a temporal intensity trace of each patch is
calculated using the averaged G channel intensity within
each patch region. The pair of traces obtained at the pair
of patches is then used as inputs for independent compo-
nent analysis (ICA) [15]. ICA outputs are two independent
components and the one corresponding to the BVP-related
signal is selected using the algorithm in [8]. Then, detrending
filter [16] and moving average filter are applied to the
extracted BVP signal to remove trends and to reduce noise.

Since the outputs of ICA have the ambiguity of plus and
minus, the extracted BVP signal may be reversed. Although
this is not a significant problem for HR estimation based
on the frequency-domain analysis, we need to estimate the
correct sign (plus or minus) for IBI estimation that requires
to accurately detect beat-to-beat peak positions. For this
purpose, we calculate the cross correlations between the
extracted BVP signal and the original two temporal intensity
traces and regard the sign that provides a higher average
correlation as the correct one.

C. Reliability-based BVP signal selection

After extracting the candidate BVP signals from all face
patch pairs, we assess the reliability of them to select
the most reliable BVP signal. We evaluate three reliability
metrics, of which two are existing frequency-based metrics
and one is our proposed metric based on the peak height
variance. Each metric is detailed below.
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Fig. 2. Illustrative explanation of QCR and QSNR.

1) Confidence ratio (CR), QCR: Lam et al. proposed CR
for HR estimation that is based on the spectral power density
distribution of the extracted BVP signal [8]. CR evaluates the
ratio between the power of the most dominant frequency and
that of the second most dominant frequency as (see Fig. 2
for illustrative explanation),

QCR = P̂fa/P̂fb , (1)

where P̂fa and P̂fb denote the spectral power at the most and
the second most dominant frequency, fa and fb, respectively.
CR evaluates the dominance of the heartbeats frequency and
higher CR values represent better BVP signals.

2) Signal-to-noise ratio (SNR), QSNR: SNR is a widely
used evaluation metric for the BVP signal (e.g., [7], [17]),
which is calculated as,

QSNR =

∫ fa+d
fa−d P̂f d f +

∫ 2 fa+2d
2 fa−2d P̂f d f∫

Ω
P̂f d f −

(∫ fa+d
fa−d P̂f d f +

∫ 2 fa+2d
2 fa−2d P̂f d f

) , (2)

where P̂f is the spectral power at the frequency f , Ω is
the considered frequency range, which is typically set as
[0.6Hz, 4Hz] according to human’s possible HR, fa is the
estimated most dominant frequency, and d is a parameter
that decides the frequency range containing the heartbeats
derived frequency. According to [17], we used d = 0.1Hz
corresponding to six beat per minute (BPM), as shown
in Fig. 2. The second term in numerator considers the
harmonic frequency. SNR evaluates the ratio of the spectral
power of the heartbeats derived frequency over that of the
other frequencies considered as noise. Higher SNR values
represent better BVP signals.

3) Peak height variance (PHV), QPHV : We introduce a
new reliability metric that directly evaluates the shape of
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Fig. 3. Examples of our QPHV metric for two BVP signals: (a) and (b). We
consider that, if PHV is small as (a), the signal is reliable for IBI estimation.
In contrast, if PHV is large as (b), the signal is regarded as not reliable.

the BVP signal based on PHV. Figure 3 shows examples
of our metric for two BVP signals. We consider that, if
PHV is small as Fig. 3(a), the signal is reliable for IBI
estimation. In contrast, if PHV is large as Fig. 3(b), the signal
is regarded as not reliable. To calculate PHV, the mean of
the BVP signal is firstly subtracted from the original signal.
Then, peak detection is applied assuming that the minimum
beat-to-beat distance is the 0.25 second, which corresponds
to 240BPM, and peak height has a non-zero value. The
peak detection algorithm is implemented using the MATLAB
findpeaks function. After the peak detection, the BVP signal
is normalized so that the peak height mean should be one.
Finally, PHV (i.e., QPHV ) is calculated using all detected
peaks. Lower PHV values represent better BVP signals.

D. IBI calculation

IBI is calculated from the selected most reliable BVP
signal. This step contains peak detection, IBI outlier removal,
and IBI interpolation, as explained below.

1) Peak detection: The above-mentioned peak detection
algorithm is applied to detect beat-to-beat peak positions.
Based on the detected peaks, the IBI series is calculated as
IBItn = tn− tn−1, where tn is the time of n-th detected peak.

2) Outlier removal: To robustly estimate IBI, we remove
outliers that have an IBI value far from the median IBI value
in a certain time window. Specifically, if |IBItn− IBImedian|>
IBImedian×0.2 is satisfied, IBItn is removed as an outlier.

3) Interpolation: The IBI series (IBIt1 , IBIt2 , · · · , IBItN ) is
then interpolated with enough sampling rate for continuous
IBI analysis. We use MATLAB piecewise cubic Hermite
interpolating polynomial (PCHIP), which experimentally
showed a lower mean IBI estimation error than commonly
used spline interpolation.

III. EXPERIMENTAL RESULTS

A. Data collection

We captured a new high-fps face video dataset, which
contains an exercise session to evaluate the IBI estimation
accuracy including temporal IBI changes. The experimental
protocol was approved by the research ethics committees
of Tokyo Institute of Technology and Olympus Corpora-
tion. The informed consent was obtained from all subjects
before the data collection. Nine subjects with both gender
(1 females) and different age (20s - 60s) took part in the
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(a) Correlation plot for 30 fps (b) Correlation plot for 300 fps

Fig. 4. The frame-rate effect on the IBI estimation. The figures show the
correlation plots between the IBIs acquired by cPPG and the IBIs estimated
by iPPG using our framework with QPHV . The figure (a) shows that the
30-fps result does not have enough temporal resolution, while the 300-fps
result in (b) shows a better correlation with the reference cPPG sensor.

experiment. The subjects were asked to sit on a chair, which
was placed at a distance of 1.5m from the camera [18].
Each video contains three sessions: relax, exercise, and relax
sessions. In the exercise session, the subjects were asked to
perform hand grip exercise. The video resolution is VGA
(640× 480) and the frame rate is 300 fps. The duration
of each session is 60 seconds and the total video duration
for each subject is 180 seconds. From each video, nine
non-overlap 20 seconds sequences were extracted and used
for experiments. To acquire reference BVP signals, a cPPG
sensor (Procomp Infinity T7500M, Thought Technology Ltd.,
Canada) was attached to a subject’s finger.

B. Frame-rate evaluation

Before the algorithm comparison, we analyze the frame-
rate effect on the IBI estimation. Although most of publicly
available datasets were recorded at a standard frame rate
(e.g., 30 fps), we constructed the 300-fps dataset. Figure 4
shows the correlation plots (total 1873 samples from all
sequences) between each beat-to-beat IBI acquired by the
cPPG sensor (2048Hz) and the estimated IBI by our frame-
work with the QPHV metric, where the 30-fps videos were
synthesized by averaging every 10 frames of the 300-fps
videos. We can clearly see that the 30-fps result does not
have enough temporal resolution, while the 300-fps result
shows a better correlation with the reference cPPG sensor.

C. Beat-to-beat IBI estimation

We first evaluate the absolute error of each beat-to-beat
IBI. To calculate the absolute error, all 1873 IBIs from the
reference cPPG sensor were compared with the interpolated
IBIs from iPPG at the cPPG sensor’s time stamps. Figure 5(a)
shows the comparison of our framework with the random
patch sampling (500 times) and a standard single face region-
based framework [13], where a manually selected cheek
region was used as a fixed region of interest and the temporal
traces of the RGB channels were used as ICA inputs. The
vertical axis represents a percentage of heartbeats whose
error is less than the threshold in the horizontal axis. We
can confirm that our framework significantly improves the
IBI estimation accuracy. Among the three reliability metrics,
QSNR and QPHV present better performance than QCR.
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Fig. 6. Continuous IBI results on two subjects. The blue line is the one
estimated using our framework with the QPHV metric, while the red line
is the one from the reference cPPG sensor. Our framework can accurately
estimate the IBI changes due to the exercise session.

Figure 6 shows the continuous IBI results for two subjects
estimated using our framework with the QPHV metric. We
can confirm that the IBI changes due to the exercise session
can be accurately estimated using our framework.

D. HRV estimation

We next evaluate the absolute error of root mean square
of the successive differences (RMSSD). RMSSD is one
of the most common HRV parameters [19]. We calculated
RMSSD of iPPG for each 20 seconds sequence only using
the detected peaks after the outlier removal. RMSSD of
iPPG was then compared with that of cPPG to calculate the
absolute error. Figure 5(b) shows the percentage of sequences
(total 81 sequences) whose error is less than the threshold in
the horizontal axis. We can confirm that the absolute error of
RMSSD is significantly reduced using our framework with
the QSNR and our QPHV metrics.

We also evaluate the absolute error of low-frequency/high-
frequency (LF/HF) ratio, which is another HRV parameter.
Experimental results showed that our QPHV metric provides
a lower average error (0.564) compared with the average
errors when using QCR (0.821) and QSNR (0.640).

IV. CONCLUSION

In this paper, we have presented a framework for accurate
IBI and HRV estimation from a facial video. Our framework

is based on the reliability evaluation of the BVP signals
extracted from randomly sampled face patches. Experimental
results on our newly constructed 300-fps dataset demonstrate
that our framework can accurately estimate continuous IBI
and several HRV parameters.
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